Growth of (αTi) grain-boundary layers in Ti–Co alloys

Allerton Press - Tập 57 Số 7 - Trang 703-709 - 2016
А. С. Горнакова1, S. I. Prokofiev1, Boris B. Straumal2, К. И. Колесникова2
1Institute of Solid-State Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
2National University of Science and Technology “MISiS”, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Il’in, A.A., Kolachev, B.A., and Pol’kin, I.S., Titanovye splavy. Sostav, struktura, svoistva (Titanium Alloys. Composition, Structure and Properties), Moscow: VILS-MATI, 2009.

Kolachev, B.A., Fizicheskoe metallovedenie titana (Physical Metallurgy of Titanium), Moscow: Metallurgiya, 1976.

Kolachev, B.A., Eliseev, Yu.S., Bratukhin, A.G., and Talalaev, V.D., Titanovye splavy v konstruktsiyakh i proizvodstve aviadvigatelei I aviatsionno-kosmicheskoi tekhniki (Titanium Alloys in Constructions and Production of Aeroengines and Aviation-and-Space Vehicles), Moscow: Moscow Aviats. Inst., 2001.

Kolachev, B.A., Betsofen, S.Ya., Bunin, L.A., and Volodin, V.A., Fizikomekhanicheskiye svoistva legkikh konstruktsionnykh splavov (Physical and Mechanical Properties of Light Structural Alloys), Moscow: Metallurgiya, 1995.

Kolachev, B.A. and Lyasotskaya, V.S., Correlation between diagrams of isothermal and anisothermal transformations and phase composition diagram of hardened titanium alloys, Metal Sci. Heat Treat., 2003, vol. 45, pp. 119–126.

Egorova, Yu.B., Il’in, A.A., Kolachev, B.A., Nosov, V.K., and Mamonov, A.M., Effect of the structure on the cutability of titanium alloys, Metal Sci. Heat Treat., 2003, vol. 45, pp. 134–139.

Kolachev, B.A., Veitsman, M.G., and Gus’kova, L.N., Structure and mechanical properties of annealed titanium alloys, Metal Sci. Heat Treat., 1983, vol. 25, pp. 626–631.

Fishgoit, A.V., Maistrov, V.M., Ilin, A.A., and Rozanov, M.A., Interaction of short cracks with the structure of metals, Sov. Mater. Sci., 1988, vol. 24, pp. 247–251.

Bobovnikov, V.N., Luk’yanenko, V.V., and Fishgoit, A.V., Effect of particles of the insoluble phase al9feni on the kinetics of fatigue crack propagation in alloy AK4-1, Metal Sci. Heat Treat., 1982, vol. 24, pp. 191–194.

Straumal, B.B., Baretzky, B., Kogtenkova, O.A., Straumal, A.B., and Sidorenko, A.S., Wetting of grain boundaries in Al by the solid Al3Mg2 phase, J. Mater. Sci., 2010, vol. 45, pp. 2057–2061.

Straumal, B.B., Gust, W., and Watanabe, T., Tie lines of the grain boundary wetting phase transition in the Zn-rich part of the Zn–Sn phase diagram, Mater. Sci. Forum, 1999, vol. 294, pp. 411–414.

Straumal, B.B., Gornakova, A.S., Kucheev, Y.O., Baretzky, B., and Nekrasov, A.N., Grain boundary wetting by a second solid phase in the Zr–Nb alloys, J. Mater. Eng. Perform., 2012, vol. 21, pp. 721–724.

Straumal, B.B., Gornakova, A.S., Kogtenkova, O.A., Protasova, S.G., Sursaeva, V.G., and Baretzky, B., Continuous and discontinuous grain boundary wetting in the Zn–Al system, Phys. Rev. B:, 2008, vol. 78, p. 054202.

Murray, J.L., Diagrams of binary titanium alloys, Bull. Alloy Phase Diagrams, 1982, vol. 3 (1), pp. 74–85.

Gurov, K.P., Kartashkin, B.A., and Ugaste, Yu.E., Vzaimnaya diffuziya v mnogofaznykh metallicheskikh sistemakh (Interdiffusion in Multiphase Metallic Systems), Moscow: Nauka, 1981.

Sharma, G., Ramanujan, R.V., and Tiwari, G.P., Instability mechanisms in lamellar microstructures, Acta Mater., 2000, vol. 48, pp. 875–889.

Graham, L.D. and Kraft, R.W., Coarsening of eutectic microstructures at elevated temperatures, Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 94–96.

Tian, Y.L. and Kraft, R.W., Mechanisms of perlite spherodization, Metall. Trans. A, 1987, vol. 18A, pp. 1403–1414.

Wey, M.Y. and Choi, J.H., Coarsening of lamellar microstructures, J. Korean Inst. Met. Mater., 1994, vol. 32, pp. 1269–1273.

Park, D.-Y. and Yang, J.-M., Coarsening of lamellar microstructures in directionally solidified yttrium aluminate/ alumina eutectic fiber, J. Am. Ceram. Soc., 2001, vol. 84, pp. 2991–2996.

Lifshitz, I.M. and Slyozov, V.V., O kinetike diffuzionnogo raspada peresyshchennykh tverdykh rastvorov (On the kinetics of diffusion decomposition of supersaturated solid solutions), Zh. Eksp. Teor. Fiz., 1958, vol. 35, pp. 479–492.

Wagner, C., Theorie der Älterung von Niederlschlägen durch Umlösen (Ostwald-Reifung), Z. Electrochem., 1961, vol. 65, pp. 581–591.

Ardell, A.J., Effect of volume fraction on particle coarsening—theoretical considerations, Acta Metall., 1972, vol. 20, pp. 61–68.

Speich, G.R. and Oriani, R.A., Rate of coarsening of copper precipitate in an alpha-iron matrix, Trans. Metall. Soc. AIME, 1965, vol. 233, pp. 623–631.

Ardell, A.J., The growth of gamma prime precipitates in aged Ni–Ti alloys, Metall. Mater. Trans. B, 1970, vol. 1, pp. 525–534.

Mullins, W.W., The statistical self-similarity hypothesis in grain-growth and particle coarsening, J. Appl. Phys., 1986, vol. 59, pp. 1341–1349.

Mullins, W.W. and Vinals, J., Self-similarity and growth-kinetics driven by surface free-energy reduction, Acta Mater., 1989, vol. 37, pp. 991–997.