Growth kinetic models for microalgae cultivation: A review

Algal Research - Tập 12 - Trang 497-512 - 2015
Eunyoung Lee1, Mehregan Jalalizadeh2, Qiong Zhang1
1Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, USA
2Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acién-Fernández, 1998, Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter and solar irradiance, Biotechnol. Bioeng., 58, 605, 10.1002/(SICI)1097-0290(19980620)58:6<605::AID-BIT6>3.0.CO;2-M

Aiba, 1982, Growth kinetics of photosynthetic microorganisms: in microbial reactions, Adv. Biochem. Eng., 23, 85

Ahmad, 2011, Microalgae as a sustainable energy source for biodiesel production: a review, Renew. Sust. Energ. Rev., 15, 584, 10.1016/j.rser.2010.09.018

Amin, 2009, Review on biofuel oil and gas production processes from microalgae, Energy Convers. Manag., 50, 1834, 10.1016/j.enconman.2009.03.001

Andrews, 1968, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., 10, 707, 10.1002/bit.260100602

Arrigo, 2005, Marine microorganisms and global nutrient cycles, Nature, 437, 349, 10.1038/nature04159

Aslan, 2006, Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae, Ecol. Eng., 28, 64, 10.1016/j.ecoleng.2006.04.003

Bannister, 1979, Quantitative description of steady state, nutrient-saturated algal growth, including adaptation, Limnol. Oceanogr., 24, 76, 10.4319/lo.1979.24.1.0076

Béchet, 2013, Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation, Biotechnol. Adv., 31, 1648, 10.1016/j.biotechadv.2013.08.014

Bernard, 2011, Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production, J. Process Control, 21, 1378, 10.1016/j.jprocont.2011.07.012

Bernard, 2012, Validation of a simple model accounting for light and temperature effect on microalgal growth, Bioresour. Technol., 123, 520, 10.1016/j.biortech.2012.07.022

Bougaran, 2010, Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus, J. Theor. Biol., 265, 443, 10.1016/j.jtbi.2010.04.018

Caperon, 1972, Nitrogen-limited growth of marine phytoplankton—I. Changes in population characteristics with steady-state growth rate, Deep Sea Res. Oceanogr. Abstr., 19, 601, 10.1016/0011-7471(72)90089-7

Caperon, 1972, Nitrogen-limited growth of marine phytoplankton—II. Uptake kinetics and their role in nutrient limited growth of phytoplankton, Deep Sea Res. Oceanogr. Abstr., 10, 619, 10.1016/0011-7471(72)90090-3

Chae, 2006, Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor, Bioresour. Technol., 97, 322, 10.1016/j.biortech.2005.02.037

Chalker, 1980, Modeling light saturation curves for photosynthesis: an exponential function, J. Theor. Biol., 84, 205, 10.1016/S0022-5193(80)80004-X

Chapelle, 2010, Alexandrium minutum growth controlled by phosphorus: an applied model, J. Mar. Syst., 83, 181, 10.1016/j.jmarsys.2010.05.012

Christenson, 2011, Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts, Biotechnol. Adv., 29, 686, 10.1016/j.biotechadv.2011.05.015

Chisti, 2008, Biodiesel from microalgae beats bioethanol, Trends Biotechnol., 26, 126, 10.1016/j.tibtech.2007.12.002

Chojnacka, 2012, Evaluation of growth yield of Spirulina (arthrospira) sp. in photoautotrophic, heterotrophic and mixotrophic cultures, World J. Microbiol. Biotechnol., 28, 437, 10.1007/s11274-011-0833-0

Concas, 2010, Novel simulation model of the solar collector of BIOCOIL photobioreactors for CO2 sequestration with microalgae, Chem. Eng. J., 157, 297, 10.1016/j.cej.2009.10.059

Concas, 2013, Mathematical modelling of Chlorella vulgaris growth in semi-batch photobioreactors fed with pure CO2, Chem. Eng. Trans., 32, 1021

De Groot, 1983, Modelling the multiple nutrient limitation of algal growth, Ecol. Model., 18, 99, 10.1016/0304-3800(83)90049-2

De Morais, 2007, Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor, J. Biotechnol., 129, 439, 10.1016/j.jbiotec.2007.01.009

Dermoun, 1992, Modelling of growth of Porphyridium cruentum in connection with two interdependent factors: light and temperature, Bioresour. Technol., 42, 113, 10.1016/0960-8524(92)90069-A

Droop, 1968, Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri, J. Mar. Biol. Assoc. UK, 48, 689, 10.1017/S0025315400019238

Filali, 2011, Growth modeling of the green microalga Chlorella vulgaris in an air-lift photobioreactor, TIC, 10

Flynn, 2002, How critical is the critical n: P ratio?, J. Phycol., 38, 961, 10.1046/j.1529-8817.2002.t01-1-01235.x

Flynn, 2003, Modelling multi-nutrient interactions in phytoplankton; balancing simplicity and realism, Prog. Oceanogr., 56, 249, 10.1016/S0079-6611(03)00006-5

Flynn, 2008, The importance of the form of the quota curve and control of non-limiting nutrient transport in phytoplankton models, J. Plankton Res., 30, 423, 10.1093/plankt/fbn007

Franz, 2012, Modeling microalgae cultivation productivities in different geographic locations-estimation method for idealized photobioreactors, Biotechnol. J., 7, 546, 10.1002/biot.201000379

García-Malea, 2006, Continuous production of green cells of Haematococcus pluvialis: modeling of the irradiance effect, Enzym. Microb. Technol., 38, 981, 10.1016/j.enzmictec.2005.08.031

Goldman, 1979, Outdoor algal mass cultures — II. Photosynthetic yield limitations, Water Res., 13, 119, 10.1016/0043-1354(79)90083-6

Goldman, 1978, Steady state growth and ammonium uptake of a fast-growing marine diatom, Limnol. Oceanogr., 23, 695, 10.4319/lo.1978.23.4.0695

Goldman, 1974, The kinetics of inorganic carbon limited algal growth, J. Water Pollut. Control Fed., 46(3), 554

Grima, 1994, A mathematical model of microalgal growth in light-limited chemostat culture, J. Chem. Technol. Biotechnol., 61, 167, 10.1002/jctb.280610212

Grima, 1996, A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances, J. Biotechnol., 45, 59, 10.1016/0168-1656(95)00144-1

Grima, 1999, Photobioreactors: light regime, mass transfer, and scaleup, Prog. Ind. Microbiol., 35, 231

Grover, 1991, Dynamics of competition among microalgae in variable environments: experimental tests of alternative models, Oikos, 231, 10.2307/3545269

Grover, 1991, Non-steady state dynamics of algal population growth: experiments with two chlorophytes, J. Physiol., 27, 70

Guest, 2013, Lumped pathway metabolic model of organic carbon accumulation and mobilization by the alga Chlamydomonas reinhardtii, Environ. Sci. Technol., 47, 3258, 10.1021/es304980y

Guieysse, 2013, Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions, Bioresour. Technol., 128, 317, 10.1016/j.biortech.2012.10.096

Haario, 2009, Reduced models of algae growth, Bull. Math. Biol., 71, 1626, 10.1007/s11538-009-9417-7

Haldane, 1930-1965

Hannon, 2010, Biofuels from algae: challenges and potential, Biofuels, 1, 763, 10.4155/bfs.10.44

Harmon, 2009, Evolutionary diversification in stickleback affects ecosystem functioning, Nature, 458, 1167, 10.1038/nature07974

Hawkins, 2004, The problem of overfitting, J. Chem. Inf. Comput. Sci., 44, 1, 10.1021/ci0342472

He, 2012, Experimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas, Biomass Bioenergy, 41, 131, 10.1016/j.biombioe.2012.02.025

Hamilton, 1997, Prediction of water quality in lakes and reservoirs. Part I—Model description, Ecol. Model., 96, 91, 10.1016/S0304-3800(96)00062-2

Hsueh, 2009, Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta, J. Photochem. Photobiol. B, 95, 33, 10.1016/j.jphotobiol.2008.11.010

Huang, 1986, Growth kinetics and cultivation of Spirulina platensis, J. Chin. Inst. Eng., 9, 355, 10.1080/02533839.1986.9676900

Jacob-Lopes, 2008, Biomass production and carbon dioxide fixation by Aphanothece microscopica nägeli in a bubble column photobioreactor, Biochem. Eng. J., 40, 27, 10.1016/j.bej.2007.11.013

Jassby, 1976, Mathematical formulation of the relationship between photosynthesis and light for phytoplankton, Limnol. Oceanogr., 21, 540, 10.4319/lo.1976.21.4.0540

Jørgensen, 1976, A eutrophication model for a lake, Ecol. Model., 2, 147, 10.1016/0304-3800(76)90030-2

John, 2000, Modelling phosphate transport and assimilation in microalgae; how much complexity is warranted?, Ecol. Model., 125, 145, 10.1016/S0304-3800(99)00178-7

Juneja, 2013, Effect of environmental factors and nutrient availability on the biochemical composition of algae for biofuel production: a review, Energies, 6, 4607, 10.3390/en6094607

Ketheesan, 2013, Modeling microalgal growth in an airlife-driven raceway reactor, Bioresour. Technol., 136, 689, 10.1016/j.biortech.2013.02.028

Kim, 2015

Klausmeier, 2004, Phytoplankton growth and stoichiometry under multiple nutrient limitation, Limnol. Oceanogr., 49, 1463, 10.4319/lo.2004.49.4_part_2.1463

Kovárová-Kovar, 1998, Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics, Microbiol. Mol. Biol. Rev., 62, 646, 10.1128/MMBR.62.3.646-666.1998

Kumar, 2010, Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions, Trends Biotechnol, 28, 371, 10.1016/j.tibtech.2010.04.004

Kunikane, 1984, Growth and nutrient uptake of green alga, Scenedesmus dimorphus, under a wide range of nitrogen/phosphorus ratio—II. Kinetic model, Water Res., 18, 1313, 10.1016/0043-1354(84)90037-X

Kurano, 2005, Selection of microalgal growth model for describing specific growth rate–light response using extended information criterion, J. Biosci. Bioeng., 100, 403, 10.1263/jbb.100.403

Lee, 1987, Kinetics and bioenergetics of light-limited photoautotrophic growth of Spirulina platensis, Biotechnol. Bioeng., 29, 832, 10.1002/bit.260290705

Lemesle, 2008, A mechanistic investigation of the algae growth “Droop” model, Acta Biotheor., 56, 87, 10.1007/s10441-008-9031-3

Martínez, 2012, Effect of light on Synechocystis sp. and modelling of its growth rate as a response to average irradiance, J. Appl. Phycol., 24, 125, 10.1007/s10811-011-9658-3

Martínez, 1999, Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus, Bioresour. Technol., 67, 233, 10.1016/S0960-8524(98)00120-5

Martínez, 1997, Influence of light intensity on the kinetic and yield parameters of Chlorella pyrenoidosa mixotrophic growth, Process Biochem., 32, 93, 10.1016/S0032-9592(96)00045-3

Martínez Sancho, 1997, Influence of phosphorus concentration on the growth kinetics and stoichiometry of the microalga Scenedesmus obliquus, Process Biochem., 32, 657, 10.1016/S0032-9592(97)00017-4

Mata, 2010, Microalgae for biodiesel production and other applications: a review, Renew. Sust. Energ. Rev., 14, 217, 10.1016/j.rser.2009.07.020

Menger-Krug, 2012, Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances, Environ. Sci. Technol, 46, 11505, 10.1021/es301967y

Monod, 1949, The growth of bacterial cultures, Annu. Rev. Microbiol., 3, 371, 10.1146/annurev.mi.03.100149.002103

Morel, 1978, Available, usable, and stored radiant energy in relation to marine photosynthesis, Deep-Sea Res., 25, 673, 10.1016/0146-6291(78)90623-9

Moya, 1997, Growth of Haematococcus lacustris: a contribution to kinetic modeling, J. Chem. Technol. Biotechnol., 68, 303, 10.1002/(SICI)1097-4660(199703)68:3<303::AID-JCTB639>3.0.CO;2-1

Muller-Feuga, 2003, Benefits and limitations of modeling for optimization of Porphyridium cruentum culture in annular photobioreactor, J. Biotechnol., 103, 153, 10.1016/S0168-1656(03)00100-7

Muller-Feuga, 1999, Growth as a function of rationing: a model applicable to fish and microalgae, J. Exp. Mar. Biol. Ecol., 236, 1, 10.1016/S0022-0981(98)00194-4

Murphy, 2011, Energy–water nexus for mass cultivation of algae, Environ. Sci. Technol., 45, 5861, 10.1021/es200109z

Novak, 1985, Inorganic carbon limited growth kinetics of some freshwater algae, Water Res., 19, 215, 10.1016/0043-1354(85)90203-9

Ogbonna, 1995, Kinetic study on light-limited batch cultivation of photosynthetic cells, J. Ferment. Bioeng., 80, 259, 10.1016/0922-338X(95)90826-L

Ojala, 1993, Effects of temperature and irradiance on the growth of two freshwater photosynthetic cryptophytes, J. Phycol., 29, 278, 10.1111/j.0022-3646.1993.00278.x

E. Ono, J.L. Cuello, Selection of optimal microalgae species for CO2 sequestration, In Second National Conference on Carbon Sequestration; 2003 May 5–8 Alexandra, VA.

Park, 2010, Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp, Bioresour. Technol., 101, 8649, 10.1016/j.biortech.2010.06.142

Park, 2011, Wastewater treatment high rate algal ponds for biofuel production, Bioresour. Technol., 102, 35, 10.1016/j.biortech.2010.06.158

Packer, 2011, Growth and neutral lipid synthesis in green microalgae: a mathematical model, Bioresour. Technol., 102, 111, 10.1016/j.biortech.2010.06.029

Paerl, 1982, 75

Pahlow, 2009, Chain model of phytoplankton P, N and light colimitation, Mar. Ecol. Prog. Ser., 376, 69, 10.3354/meps07748

Parsons, 2013

Pegallapati, 2012, Modeling algal growth in bubble columns under sparging with CO2-enriched air, Bioresour. Technol., 124, 137, 10.1016/j.biortech.2012.08.026

Platt, 1980, Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, J. Mar. Res., 38, 687

Popova, 2008, About microalgae growth kinetics modeling, Chem. Biochem. Eng. Q., 22, 491

Riley, 1988, MINLAKE: a dynamic lake water quality simulation model, Ecol. Model., 43, 155, 10.1016/0304-3800(88)90002-6

Regaudie-de-Gioux, 2014, Poor correlation between phytoplankton community growth rates and nutrient concentration in the sea, Biogeosci. Discuss., 11, 14,797

Ribeiro, 2008, Transient modeling and simulation of compact photobioreactors, Thermal. Eng. (Brazil), 7, 66

Ribeiro, 2009, Numerical simulation of the biomass concentration of microalgae cultivated in a self-sustainable photobioreactor, 15

Richmond, 2013

Rubio, 2003, A mechanistic model of photosynthesis in microalgae, Biotechnol. Bioeng., 81, 459, 10.1002/bit.10492

Ruiz-Marin, 2010, Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater, Bioresour. Technol., 101, 58, 10.1016/j.biortech.2009.02.076

Rusten, 2011, Microalgae growth for nutrient recovery from sludge liquor and production of renewable bioenergy, Water Sci. Technol., 64, 1195, 10.2166/wst.2011.722

Saito, 2008, Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability, Limnol. Oceanogr., 53, 276, 10.4319/lo.2008.53.1.0276

Sasi, 2011, Growth kinetics and lipid production using Chlorella vulgaris in a circulating loop photobioreactor, J. Chem. Technol. Biotechnol., 86, 875, 10.1002/jctb.2603

Scott, 2010, Biodiesel from algae: challenges and prospects, Curr. Opin. Biotechnol., 21, 277, 10.1016/j.copbio.2010.03.005

Sommer, 1991, A comparison of the Droop and the Monod models of nutrient limited growth applied to natural populations of phytoplankton, Funct. Ecol., 535, 10.2307/2389636

Spijkerman, 2011, Independent colimitation for carbon dioxide and inorganic phosphorus, PLoS One, 6, 10.1371/journal.pone.0028219

Steele, 1962, Environmental control of photosynthesis in the sea, Limnol. Oceanogr., 7, 137, 10.4319/lo.1962.7.2.0137

Steele, 1966, Notes on some theoretical in problems in production ecology, 383

Stockenreiter, 2013, Functional group richness: implications of biodiversity for light use and lipid yield in microalgae, J. Physiol., 49, 838

Striebel, 2009, Spectral niche complementarity and carbon dynamics in pelagic ecosystems, Am. Nat., 174, 141, 10.1086/599294

Talbot, 1991, A comparative study and mathematical modeling of temperature, light and growth of three microalgae potentially useful for wastewater treatment, Water Res., 25, 465, 10.1016/0043-1354(91)90083-3

Tam, 2000, Effect of immobilized microalgal bead concentrations on wastewater nutrient removal, Environ. Pollut., 107, 145, 10.1016/S0269-7491(99)00118-9

Tamiya, 1953, Kinetics of growth of Chlorella, with special reference to its dependence on quantity of available light and on temperature, 204

Tang, 2011, CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels, Bioresour. Technol., 102, 3071, 10.1016/j.biortech.2010.10.047

Terry, 1980, Nitrogen and phosphorus requirements of Pavlova lutheri in continuous culture, Bot. Mar., 23, 757

Thingstad, 1987, Utilization of N, P, and organic C by heterotrophic bacteria. I. Outline of a chemostat theory with a consistent concept of “maintenance” metabolism, Mar. Ecol. Prog. Ser., 35, 99, 10.3354/meps035099

Thingstad, 1998, A theoretical approach to structuring mechanisms in the pelagic food web, Hydrobiologia, 363, 59, 10.1023/A:1003146310365

Travieso, 2006, Batch mixed culture of Chlorella vulgaris using settled and diluted piggery waste, Ecol. Eng., 28, 158, 10.1016/j.ecoleng.2006.06.001

van Oorschot, 1955

Vaccari, 2005

Webb, 1974, Carbon dioxide exchange of Alnus rubra: a mathematical model, Oecologia, 17, 281, 10.1007/BF00345747

Wijanarko, 2008, Enhanced Chlorella vulgaris buitenzorg growth by photon flux density alteration in serial photobioreactors, Biotechnol. Bioprocess Eng., 13, 476, 10.1007/s12257-008-0149-6

Wu, 2013, An integrated microalgal growth model and its application to optimize the biomass production of Scenedesmus sp. LX1 in open pond under the nutrient level of domestic secondary effluent, Bioresour. Technol., 144, 445, 10.1016/j.biortech.2013.06.065

Xin, 2010, Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp, Bioresour. Technol., 101, 5494, 10.1016/j.biortech.2010.02.016

Yang, 2011, Modeling and evaluation of CO2 supply and utilization in algal ponds, Ind. Eng. Chem. Res., 50, 11,181, 10.1021/ie200723w

Yao, 2011, A model and experimental study of phosphate uptake kinetics in algae: considering surface adsorption and P-stress, J. Environ. Sci. (China), 23, 189, 10.1016/S1001-0742(10)60392-0

Yao, 2013, Characterization of cell growth and starch production in the marine green microalga Tetraselmis subcordiformis under extracellular phosphorus-deprived and sequentially phosphorus-replete conditions, Appl. Microbiol. Biotechnol., 97, 6099, 10.1007/s00253-013-4983-x

Yeh, 2010, Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31, Eng. Life Sci., 10, 201, 10.1002/elsc.200900116

Yoo, 2012, Design of experiments and sensitivity analysis for microalgal bioreactor systems, 722

Yun, 2003, Kinetic modeling of the light-dependent photosynthetic activity of the green microalga Chlorella vulgaris, Biotechnol. Bioeng., 83, 303, 10.1002/bit.10669

Zeng, 2011, Microalgae bioengineering: from CO2 fixation to biofuel production, Renew. Sust. Energ. Rev., 15, 3252, 10.1016/j.rser.2011.04.014

Zhang, 1999, Kinetic models for astaxanthin production by high cell density mixotrophic culture of the microalga Haematococcus pluvialis, J. Ind. Microbiol. Biotechnol., 23, 691, 10.1038/sj.jim.2900685

Zhao, 2011, Effect of cultivation mode on microalgal growth and CO2 fixation, Chem. Eng. Res. Des., 89, 1758, 10.1016/j.cherd.2011.02.018