Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles

Springer Science and Business Media LLC - Tập 3 Số 1 - Trang 1-6 - 2011
Eun Joo Kim1, Soon Hyun Kim1, Hyun-Chul Kim1, Se Geun Lee1, Sung Jun Lee1, Sang Won Jeong1
1Division of Nano & Bio Technology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Nowack, B. & Bucheli, T. D. Occurrence, behaviour and effects of nanoparticles in the environment. Environ. Pollution. 150, 5–22 (2007).

Ball, P. Natural strategies for the molecular engineer. Nanotechnol. 13, 15–28 (2002).

Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006).

Brunner, T. I. et al. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and effect of particle solubility. Environ. Sci. Technol. 40, 4374–4381 (2006).

Navarro, E. et al. Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants and fungi. Ecotoxicol. 17, 372–386 (2008).

Cattaneo, A. G., Gornati, R., Chiriva-Internati, M. & Bernardini, G. Ecotoxicology of nanomaterials: the role of invertebrate testing. Invertebr. Survival. J. 6, 78–97 (2009).

Kahru, A. & Dubourguier, H. C. From ecotoxicology to nanoecotoxicology. Toxicol. 269, 105–119 (2010).

Reyes-Coronado, D. et al. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnol. 19, 10–19 (2008).

UNEP, Emerging Challenges — Nanotechnology and the Environment (2007).

Robichaud, C. O., Uyar, A. E., Darby, M. R., Zucker, L. G. & Wiesner, M. R. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ. Sci. Technol. 43, 4227–4233 (2009).

EPA, External Review Draft, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen, US.EPA (2009).

Hall, S., Bradley, T., Moore, J. T., Kuykindall, T. & Minella, L. Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicol. 17, 396–409 (2009).

Armelao, L. et al. Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnol. 18, 7 (2007).

Reeves, J. F., Davies, S. J., Dodd, N. J. F. & Jha, A. N. Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat. Res. 640, 133–122 (2008).

Griffitt, R. J., Luo, J., Gao, J., Bonzongo, J. C. & Barber, D. S. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem. 27, 1972–1978 (2008).

Maynard, A. D. Nanotechnology: a research strategy for addressing risk, Woodrow Wilson International Center for Scholars (2006).

Morones, J. R. et al. The bactericidal effect of silver nanoparticles. Nanotechnol. 16, 2346–2353 (2005).

White, R. J. An historical overview of the use of silver in wound management. Br. J. Nurs. 10, S3–8 (2001).

Sondi, I. & Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interface. Sci. 275, 177–182 (2004).

Kim, J. S. et al. Antimicrobial effects of silver nanoparticles. Nanomed. 3, 95–101 (2007).

Raffin, M. et al. Antibacterial Characterization of silver nanoparticles against E. coli ATCC-15224. J. Mater. Sci. Technol. 24, 192–196 (2008).

Gade, A. K. et al. Exploitation of Aspergillus niger for fabrication of silver nanoparticles. J. Biobased. Mater. Bioenergy 2, 243–247 (2008).

Lok, C. N. et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome. Res. 5, 916–924 (2006).

Menard, A., Drobne, D. & Jemec, A. Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ. Pollution 159, 677–684 (2011).

Driever, S. M., Nes, E. H.V. & Roijackers, R. M. M. Growth limitation of Lemna minor due to high plant density. Aquat. Bot. 81, 245–251 (2005).

OECD, Guidelines for the testing of chemicals. Lemna sp. Growth Inhibition Test, Draft guideline 221. 2002.

Davis, S. M., Drake, K. D. & Maier, K. J. Toxicity of boron to the duckweed Spirodella polyrrhiza. Chemosphere 48, 615–620 (2002).

Lakshminarasimhan, N., Bae, E. & Choi, W. Enhanced Photocatalytic Production of H2 on Mesoporous TiO2 Prepared by Template-Free Method: Role of Interparticle Charge Transfer. J. Phys. Chem. C 111, 15244–15250 (2007).

Harris, A. T. & Bali, R. On the formation and extent of uptake of silver nanoparticles by live plants. J. Nanoparticle Res. 10, 691–695 (2008).

Seeger, E. M., Baun, A., Kästner, M. & Trapp, S. Insignificant acute toxicity of TiO2 nanoparticles to willow trees. J. Soil Sediment 9, 46–53 (2008).

Ghosh, M., Bandyopadhyay, M. & Mukherjee, A. Genotoxicity of titanium dioxide TiO2 nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere 81, 1253–1262 (2010).

Kaegi, R. et al. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollution 156, 233–239 (2008).

Mueller, N. C. & Nowack, B. Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42, 4447–4453 (2008).