Growth enhancement of sunchoke by arbuscular mycorrhizal fungi under drought condition

Rhizosphere - Tập 17 - Trang 100308 - 2021
Sabaiporn Nacoon1, Jindarat Ekprasert1, Nuntavun Riddech1, Wiyada Mongkolthanaruk1, Sanun Jogloy2, Nimitr Vorasoot2, Julia Cooper3, Sophon Boonlue1
1Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
2Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
3School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK

Tài liệu tham khảo

Alguacil, 2011, Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land, Soil Biol. Biochem., 43, 167, 10.1016/j.soilbio.2010.09.029 Bach, 2013, Sensory quality and appropriateness of raw and boiled Jerusalem artichoke tubers (Helianthus tuberosus L.), J. Sci. Food Agric., 93, 1211, 10.1002/jsfa.5878 Baldini, 2004, Evaluation of new clones of Jerusalem artichoke (Helianthus tuberosus L.) for inulin and sugar yield from stalks and tubers, Ind. Crop. Prod., 19, 25, 10.1016/S0926-6690(03)00078-5 Baldini, 2006, Chicory and Jerusalem artichoke productivity in different areas of Italy, in relation to water availability and time of harvest, Ital. J. Agron., 2, 291, 10.4081/ija.2006.291 Bhattacharjee, 2010, Influences of three different arbuscular mycorrhizal fungi on the growth and phosphorus contents of Cajanus cajan L. seedlings, J. Pure Appl. Microbiol., 4, 409 Banerjee, 2013, Screening of efficient arbuscular mycorrhizal fungi for Azadirachta indica under nursery condition: a step towards afforestation of semi-arid region of western India, Braz. J. Microbiol., 44, 587, 10.1590/S1517-83822013005000046 Boonlue, 2012, Diversity and efficiency of arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens) farms, Mycoscience, 53, 10, 10.47371/s10267-011-0131-6 Boutasknit, 2020, Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and (in) organic adjustments, Plants, 9, 1, 10.3390/plants9010080 Chen, 2017, Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings, Front. Microbiol., 8, 1, 10.3389/fmicb.2017.02516 Claussen, 2005, Proline as a measure of stress in tomato plants, Plant Sci., 168, 241, 10.1016/j.plantsci.2004.07.039 Daniels, 1982, Method for the recovery and quantitative estimation of propagules from soil, 29 Djighaly, 2018, Selection of arbuscular mycorrhizal fungal strains to improve Casuarina equisetifolia L. and Casuarina glauca Sieb. tolerance to salinity, Ann. For. Sci., 75, 1, 10.1007/s13595-018-0747-1 Dodd, 2000, Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection, Plant Soil, 226, 131, 10.1023/A:1026574828169 Doorenbos, 1992, Crop water requirement: calculation of crop water requirement, 1 Farzaneh, 2011, Arbuscular mycorrhiza enhances nutrient uptake in chickpea, Plant Soil Environ., 57, 465, 10.17221/133/2011-PSE Fernández, 2011, Use of a liquid inoculum of the arbuscular mycorrhizal fungi Glomus hoi in rice plants cultivated in a saline Gleysol: a new alternative to inoculate, J. Plant Breed Crop Sci., 3, 24 Gavito, 2000, Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativurn l.) plants, J. Exp. Bot., 51, 1931, 10.1093/jexbot/51.352.1931 Gerdemann, 1963, Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting, Trans. Br. Mycol. Soc., 46, 235, 10.1016/S0007-1536(63)80079-0 He, 2017, Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. Under drought stress, Front. Plant Sci., 8, 1, 10.3389/fpls.2017.00183 International culture collection of vesicular and arbuscular mycorrhizal fungi Janket, 2013, Genetic diversity of water use efficiency in Jerusalem artichoke (Helianthus tuberosus L.) germplasm, Aust. J. Crop. Sci., 7, 1670 Koske, 1989, A modified procedure for staining roots to detect VA mycorrhizas, Mycol. Res., 92, 486, 10.1016/S0953-7562(89)80195-9 Losavio, 1997, Water requirements and nitrogen fertilization in Jerusalem artichoke (Helianthus tuberosus L.) grown under mediterranean conditions, Acta Hortic., 449, 205, 10.17660/ActaHortic.1997.449.28 Meddich, 2015, Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera), Sci. Hortic., 192, 468, 10.1016/j.scienta.2015.06.024 Mirshad, 2016, Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.), Environ. Monit. Assess., 188, 425, 10.1007/s10661-016-5428-7 Monti, 2005, Growth response, leaf gas exchange and fructans accumulation of Jerusalem artichoke (Helianthus tuberosus L.) as affected by different water regimes, Eur. J. Agron., 23, 136, 10.1016/j.eja.2004.11.001 Namwongsa, 2019, Endophytic bacteria improve root traits, biomass and yield of Helianthus tuberosus L. Under normal and deficit water conditions, J. Microbiol. Biotechnol., 29, 1777, 10.4014/jmb.1903.03062 Ortiz, 2015, Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains, J. Plant Physiol., 147, 87, 10.1016/j.jplph.2014.08.019 Prasad, 2002, Effect of arbuscular mycorrhizae on biomass yield, uptake and translocation of nitrogen, phosphorus and potassium in Azadirachta indica L, 187 Pérez, 2009, Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types, Mycorrhiza, 19, 517, 10.1007/s00572-009-0254-1 Rahimzadeh, 2017, Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): a field study, Mycorrhiza, 27, 537, 10.1007/s00572-017-0775-y Ruttanaprasert, 2014, Genotypic variability for tuber yield, biomass, and drought tolerance in Jerusalem artichoke germplasm, Turk. J. Agric. For., 38, 570, 10.3906/tar-1310-43 Ruttanaprasert, 2015, Biomass and Bioenergy Root responses of Jerusalem artichoke genotypes to different water regimes, Biomass Bioenergy, 81, 369, 10.1016/j.biombioe.2015.07.027 Ruttanaprasert, 2016, Effects of water stress on total biomass, tuber yield, harvest index and water use efficiency in Jerusalem artichoke, Agric. Water Manag., 166, 130, 10.1016/j.agwat.2015.12.022 Saengkanuk, 2011, A simplified spectrophotometric method for the determination of inulin in Jerusalem artichoke (Helianthus tuberosus L.) tubers, Eur. Food Res. Technol., 233, 609, 10.1007/s00217-011-1552-3 Sarr, 2020, Optimizing potato (Solanum tuberosum), plant transplantation through micropropogation, Asian Journal of Research in Botany, 4, 37 Schenck, 1990 Singh, 2010, Biocontrol of fusarium wilt of chickpea using arbuscular mycorrhizal fungi and rhizobium leguminosorum biovar, Caryologia, 63, 349, 10.1080/00087114.2010.10589745 Song, 2017, Simultaneous production of bioethanol and value- added d-psicose from Jerusalem artichoke (Helianthus tuberosus L.) tubers, Bioresour. Technol., 244, 1068, 10.1016/j.biortech.2017.08.079 Torrecillas, 2012, Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid mediterranean prairies, Appl. Environ. Microbiol., 78, 6180, 10.1128/AEM.01287-12 Trouvelot, 1986, Mesure du taux de mycorrhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification functionnelle, 217 Vandenkoornhuyse, 2002, Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem, Mol. Ecol., 11, 1555, 10.1046/j.1365-294X.2002.01538.x Vannette, 2013, Mycorrhizal abundance affects the expression of plant resistance traits and herbivore performance, J. Ecol., 101, 1019, 10.1111/1365-2745.12111 Wang, 2015, Bioethanol production from the dry powder of Jerusalem artichoke tubers by recombinant Saccharomyces cerevisiae in simultaneous saccharification and fermentation, J. Ind. Microbiol. Biotechnol., 42, 543, 10.1007/s10295-014-1572-7 Yin, 2010, Effects of vesicular-arbuscular mycorrhiza on the protective system in strawberry leaves under drought stress, Front. Agric. China, 4, 165, 10.1007/s11703-010-0109-8