Growth and characterisation of Ga(NAsBi) alloy by metal–organic vapour phase epitaxy
Tài liệu tham khảo
Sweeney, 2013, Bismide–nitride alloys: promising for efficient light emitting devices in the near- and mid-infrared, J. Appl. Phys., 113, 043110, 10.1063/1.4789624
Fluegel, 2006, Giant spin–orbit bowing in GaAs1−xBix, Phys. Rev. Lett., 97, 067205, 10.1103/PhysRevLett.97.067205
Usman, 2011, Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs, Phys. Rev. B, 84, 245202, 10.1103/PhysRevB.84.245202
Yoshimoto, 2006, New semiconductor alloy GaNAsBi with temperature-insensitive bandgap, Phys. Status Solidi, 243, 1421, 10.1002/pssb.200565270
Lu, 2009, Composition dependence of photoluminescence of GaAs1−xBix alloys, Appl. Phys. Lett., 95, 041903, 10.1063/1.3191675
Ptak, 2012, Kinetically limited growth of GaAsBi by molecular-beam epitaxy, J. Cryst. Growth, 338, 107, 10.1016/j.jcrysgro.2011.10.040
P. Ludewig, Z.L. Bushell, L. Nattermann, N. Knaub, W. Stolz, K. Volz, Growth of Ga(AsBi) on GaAs by continuous flow MOVPE, J. Cryst. Growth. 10.1016/j.jcrysgro.2014.03.041, accepted for publication.
Ludewig, 2012, MOVPE growth of Ga(AsBi)/GaAs multiquantum well structures, J. Cryst. Growth, 370, 186, 10.1016/j.jcrysgro.2012.07.002
Oe, 2002, Metalorganic vapor phase epitaxial growth of metastable GaAs1−xBix alloy, J. Cryst. Growth, 237–239, 1481, 10.1016/S0022-0248(01)02301-6
Tixier, 2005, Band gaps of the dilute quaternary alloys GaNxAs1−x−yBiy and Ga1−yInyNxAs1−x, Appl. Phys. Lett., 86, 112113, 10.1063/1.1886254
Yoshimoto, 2004, New semiconductor GaNAsBi alloy grown by molecular beam epitaxy, Jpn. J. Appl. Phys., 43, L845, 10.1143/JJAP.43.L845
Pollak, 1994, 527
Fewster, 2003, Analysis of nearly perfect semiconductor multi-layer structures, 200
Volz, 2009, MOVPE growth of dilute nitride III/V semiconductors using all liquid metalorganic precursors, J. Cryst. Growth, 311, 2418, 10.1016/j.jcrysgro.2008.09.210
Li, 2001, Origin of improved luminescence efficiency after annealing of Ga(In)NAs materials grown by molecular-beam epitaxy, Appl. Phys. Lett., 79, 1094, 10.1063/1.1396316
Thinh, 2001, Formation of nonradiative defects in molecular beam epitaxial GaNxAs1−x studied by optically detected magnetic resonance, Appl. Phys. Lett., 79, 3089, 10.1063/1.1416155
Spruytte, 2001, Incorporation of nitrogen in nitride–arsenides: origin of improved luminescence efficiency after anneal, J. Appl. Phys., 89, 4401, 10.1063/1.1352675
Toivonen, 2003, Observation of defect complexes containing Ga vacancies in GaAsN, Appl. Phys. Lett., 82, 40, 10.1063/1.1533843
Volz, 2004, Specific structural and compositional properties of (GaIn)(NAs) and their influence on optoelectronic device performance, J. Cryst. Growth, 272, 739, 10.1016/j.jcrysgro.2004.09.012
Höhnsdorf, 1998, Investigations of (GaIn)(NAs) bulk layers and (GaIn)(NAs)/GaAs multiple quantum well structures grown using tertiarybutylarsine (TBAs) and 1,1-dimethylhydrazine (UDMHy), J. Cryst. Growth, 195, 391, 10.1016/S0022-0248(98)00651-4
Miyamoto, 2000, CBE and MOCVD growth of GaInNAs, J. Cryst. Growth, 209, 339, 10.1016/S0022-0248(99)00567-9
Moto, 1999, Metalorganic vapor phase epitaxial growth of GaNAs using tertiarybutylarsine (TBA) and dimethylhydrazine (DMHy), Jpn. J. Appl. Phys., 38, 1015, 10.1143/JJAP.38.1015
Aspnes, 1973, Third-derivative modulation spectroscopy with low-field electroreflectance, Surf. Sci., 37, 418, 10.1016/0039-6028(73)90337-3
Wu, 2002, Band anticrossing in highly mismatched III–V semiconductor alloys, Semicond. Sci. Technol., 17, 860, 10.1088/0268-1242/17/8/315
Volz, 2008, Optimization of annealing conditions of (GaIn)(NAs) for solar cell applications, J. Cryst. Growth, 310, 2222, 10.1016/j.jcrysgro.2007.11.199
Feng, 2007, Influence of thermal annealing treatment on the luminescence properties of dilute GaNAs–bismide alloy, Jpn. J. Appl. Phys., 46, L764, 10.1143/JJAP.46.L764