Growth and Nanofabrication of All-Perovskite Superconducting/Ferromagnetic/Superconducting Junctions

Springer Science and Business Media LLC - Tập 32 - Trang 2721-2726 - 2019
R. de Andrés Prada1,2, T. Golod1, C. Bernhard2, V. M. Krasnov1
1Department of Physics, Stockholm University, Stockholm, Sweden
2Physics Department and Fribourg Center for Nanomaterials (FriMat), University of Fribourg, Fribourg, Switzerland

Tóm tắt

We fabricate and study experimentally all-perovskite-oxide superconductor/ferromagnetic insulator/superconductor (S/FI/S) tunnel junctions made out of the high-temperature cuprate superconductor YBa2Cu3O7−y (YBCO) and the colossal magnetoresistive manganite LaMnO3 (LMO) in the ferromagnetic insulator state. YBCO/LMO/YBCO heterostructures with different LMO thicknesses (5, 10, and 20 nm) are grown epitaxially via pulsed laser deposition. Nanoscale S/FI/S junctions with sizes down to 300 nm are made by three-dimensional nano-sculpturing with focused ion beam. Junctions with a thick (20 nm) LMO barrier exhibit a large negative magnetoresistance below $$ {T}_{Curie}\sim 160 $$ K, typical for colossal magnetoresistive manganites, as well as a kink in the current-voltage characteristics at large bias ($$ V\sim 1 $$–2 Volts), attributed to Zener-type tunneling. However, they do not show a measurable Josephson current. On the contrary, junctions with the thinnest 5-nm LMO barrier exhibit a large supercurrent and no signs of magnetism. The latter may indicate the presence of pinholes due to thickness inhomogeneity and/or a $$ \sim $$ 2 nm dead magnetic layer at the YBCO / LMO interface caused, e.g., by interdiffusion or strain. The junction with an intermediate 10-nm LMO barrier exhibited a desired S/FI/S junction behavior with significant negative magnetoresistance and signatures of a small Josephson current.

Tài liệu tham khảo

Buzdin, A.I.: Proximity effect in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–976 (2005) Bergeret, F.S., Volkov, A.F., Efetov, K.B.: Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev. Mod. Phys. 77, 1321–1373 (2005) Asano, Y., Sawa, Y., Tanaka, Y., Golubov, A.A.: Odd-frequency pairs and Josephson current through a strong ferromagnet. Phys. Rev. B 76, 224525 (2007) Robinson, J.W., Witt, J.D.S., Blamire, M.G.: Controlled injection of Spin-Triplet supercurrents into a strong ferromagnet. Science 329, 59–61 (2010) Khaire, T.S., Khasawneh, M.A., Pratt, W.P. Jr., Birge, N.O.: Observation of Spin-Triplet superconductivity in Co-Based Josephson junctions. Phys. Rev. Lett. 104, 137002 (2010) Iovan, A., Golod, T., Krasnov, V.M.: Controllable generation of a spin-triplet supercurrent in a Josephson spin valve. Phys. Rev. B 90, 134514 (2014) Keizer, R.S., Goennenwein, S.T.B., Klapwijk, T.M., Miao, G., Xiao, G., Gupta, A.: A spin-triplet supercurrent through the half-metallic ferromagnet CrO2. Nature 439, 825–827 (2006) Singh, A., Jansen, C., Lahabi, K., Aarts, J.: High-quality CrO2 nanowires for dissipation-less spintronics. Phys. Rev. X 6, 041012 (2016) Hu, T., Xiao, H., Visani, C., Sefrioui, Z., Santamaria, J., Almasan, C.C.: Evidence from MR for an induced triplet supercond. state in LMO/YBCO multilayers. Phys. Rev. B 80(R), 060506 (2009) Dybko, K., Werner-Malento, K., Aleshkevych, P., Wojcik, M., Sawicki, M., Przyslupski, P.: Possible spin-triplet supercond. phase in the LMO/YBCO/LMO trilayer. Phys. Rev. B 80, 144504 (2009) Kalcheim, Y., Kirzhner, T., Koren, G., Millo, O.: Long-range proximity effect in La2/3Ca1/3MnO3/(100) YBa2Cu3O7−δ ferromagnet/superconductor bilayer: Evidence for induced triplet superconductivity in the ferromagnet. Phys. Rev. B 83, 064510 (2011) Visani, C., Sefrioui, Z., Tornos, J., Leon, C., Briatico, J., Bibes, M., Barthelemy, A., Santamaria, J., Villegas, J.E.: Equal-spin Andreev reflection and long-range coherent transport in high temperature superconductor/half-metallic ferromagnet junctions. Nature Phys. 8, 539 (2012) Golod, T., et al.: High bias anomaly in YBa2Cu3O7−x/LaMnO3 + δ/YBa2Cu3O7−x superconductor/ferromagnetic insulator/superconductor junctions: Evidence for a long-range superconducting proximity effect through the conduction band of a ferromagnetic insulator. Phys. Rev. B 87, 134520 (2013) Marozau, I., Das, P.T., Döbeli, M., Storey, J.G., Uribe-Laverde, M.A., Das, S., Wang, C., Rössle, M., Bernhard, C.: Influence of La and Mn vacancies on the electronic and magnetic properties of LaMnO3 thin films grown by pulsed laser deposition. Phys. Rev. B 89, 174422 (2014) Krasnov, V.M., Golod, T., Bauch, T., Delsing, P.: Anticorrelation between temperature and fluctuations of the switching current in moderately damped Josephson junctions. Phys. Rev. B 76, 224517 (2007) Renshaw Wang, X., Li, C.J., Lü, W. M., Paudel, T.R., Leusink, D.P., Hoek, M., Poccia, N., Vailionis, A., Venkatesan, T., Coey, J.M.D., Ariando, Tsymbal, E.Y., Hilgenkamp, H.: Imaging and control of ferromagnetism in LaMnO3/SrTiO3 heterostructures. Science 349, 716–719 (2015) Yamada, H., Xiang, P.-H., Akihito, S.: Phase evolution and critical behavior in strain-tuned LaMnO3-SrMnO3 superlattices. Phys. Rev. B 81, 014410 (2010) Casanove, M.-J., Roucau, C., Baulès, P., Majimel, J., Ousset, J.-C., Magnoux, D., Bobo, J.F.: Growth and relaxation mechanisms in La0.66Sr0.33MnO3 manganites deposited on SrTiO3 (0 0 1) and MgO (0 0 1). Appl. Surf. Sci. 188, 19–23 (2002) Wiedenhorst, B., Höfener, C., Lu, Y., Klein, J., Alff, L., Gross, R., Freitag, B.H., Mader, W.: Strain effects and microstructure of epitaxial manganite thin films and heterostructures. Appl. Phys. Lett. 74, 3636 (1999) Siwach, P.K., Singh, H.K., Srivastava, O.N.: Influence of strain relaxation on magnetotransport properties of epitaxial La0.7Ca0.3MnO3 films. J. Phys.: Condens. Matter 18, 9783–9794 (2006) Malik, V.K., Marozau, I., Das, S., Doggett, B., Satapathy, D.K., Uribe-Laverde, M.A., Biskup, N., Varela, M., Schneider, C.W., Marcelot, C., Stahn, J., Bernhard, C.: Pulsed laser deposition growth of heteroepitaxial YBa2Cu3O7/La0.67Ca0.33MnO3 superlattices on NdGaO3 and Sr0.7La0.3Al0.65Ta0.35O3 substrates. Phys. Rev. B 85, 054514 (2012)