Growth and Distortion Results for a Class of Biholomorphic Mapping and Extremal Problem with Parametric Representation in $$\mathbb {C}^n$$

Complex Analysis and Operator Theory - Tập 13 - Trang 2747-2769 - 2019
Zhenhan Tu1, Liangpeng Xiong1
1School of Mathematics and Statistics, Wuhan University, Wuhan, People’s Republic of China

Tóm tắt

Let $$\widehat{\mathcal {S}}_g^{\alpha , \beta }(\mathbb {B}^n)$$ be a subclass of normalized biholomorphic mappings defined on the unit ball in $$\mathbb {C}^n,$$ which is closely related to the starlike mappings. Firstly, we obtain the growth theorem for $$\widehat{\mathcal {S}}_g^{\alpha , \beta }(\mathbb {B}^n)$$ . Secondly, we apply the growth theorem and a new type of the boundary Schwarz lemma to establish the distortion theorems of the Fréchet-derivative type and the Jacobi-determinant type for this subclass, and the distortion theorems with g-starlike mapping (resp. starlike mapping) are partly established also. At last, we study the Kirwan and Pell type results for the compact set of mappings which have g-parametric representation associated with a modified Roper–Suffridge extension operator, which extend some earlier related results.

Tài liệu tham khảo

Barnard, R., FitzGerald, C., Gong, S.: A distortion theorem for biholomorphic mappings in \(\mathbb{C}^2\). Trans. Am. Math. Soc. 344, 907–924 (1994) Bracci, F.: Shearing process and an example of a bounded support function in \(S^0(\mathbb{B}^2)\). Comput. Methods Funct. Theory 15, 151–157 (2015) Cartan, H.: Sur la possibilité détendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalentes. In: Montel, P. (ed.) Lecons sur les Fonctions Univalentes ou Multivalentes. Gauthier-Villars, Paris (1933) Chirilă, T.: An extension operator associated with certain g-loewner chains. Taiwan. J. Math. 17(5), 1819–1837 (2013) Chirilă, T.: Extreme points, support points and \(g\)-loewner chains associated with Roper–Suffridge and Pfaltzgraff–Suffridge extension operators. Complex Anal. Oper. Theory 9, 1781–1799 (2015) Chirilă, T., Hamada, H., Kohr, G.: Extreme points and support points for mappings with \(g\)-parametric representation in \(\mathbb{C}^n\). Mathematica (Cluj) 56(79), 21–40 (2014) Chu, C.H., Hamada, H., Honda, T., Kohr, G.: Distortion theorems for convex mappings on homogeneous balls. J. Math. Anal. Appl. 369(2), 437–442 (2010) Duren, P.L.: Univalent functions, Grundlehren der mathematischen Wtssenschaften, vol. 259. Springer, New York, Berlin, Heidelberg, Tokyo (1983) Graham, I., Hamada, H., Kohr, G.: Parametric representation of univalent mappings in several complex variables. Can. J. Math. 54, 324–351 (2002) Graham, I., Hamada, H., Kohr, G., Kohr, M.: Extreme points, support points and the Loewner variation in several complex variables. Sci. China Math. 55, 1353–1366 (2012) Graham, I., Hamada, H., Kohr, G., Kohr, M.: Extremal properties associated with univalent subordination chains in \(\mathbb{C}^n\). Math. Ann. 359, 61–99 (2014) Graham, I., Hamada, H., Kohr, G., Kohr, M.: Bounded support points for mappings with \(g\)-parametric representation in \(\mathbb{C}^2\). J. Math. Anal. Appl. 454, 1085–1105 (2017) Graham, I., Hamada, H., Kohr, G., Suffridge, T.J.: Extension operators for locally univalent mappings. Mich. Math. J. 50, 37–55 (2002) Graham, I., Kohr, G., Pfaltzgraff, J.A.: Parametric representation and linear functionals associated with extension operators for biholomorphic mappings. Rev. Roum. Math. Pures Appl. 52, 47–68 (2007) Gurganus, K.R.: \(\Phi \)-like holomorphic functions in \(\mathbb{C}^n\) and banach spaces. Proc. Am. Math. Soc. 205, 389–406 (1975) Hamada, H., Honda, T., Kohr, G.: Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation. J. Math. Anal. Appl. 317, 302–319 (2006) Hamada, H., Kohr, G.: Growth and distortion results for convex mappings in infinite dimensional spaces. Complex Var. 47(4), 291–301 (2002) Kikuchi, K.: Starlike and convex mappings in several complex variables. Pac. J. Math. 44, 569–580 (1973) Krantz, S.: The Schwarz lemma at the boundary. Complex Var. Elliptic Equ. 56(5), 455–468 (2011) Liu, T.S., Wang, J.F., Tang, X.M.: Schwarz lemma at the boundary of the unit ball in \(\mathbb{C}^n\) and its applications. J. Geom. Anal. 25, 1890–1914 (2015) Liu, X.S., Liu, T.S.: On the sharp distortion theorems for a subclass of starlike mappings in several complex variables. Taiwan. J. Math. 19(2), 363–379 (2015) Liu, X.S., Liu, T.S.: Sharp distortion theorems for a subclass of biholomorphic mappings which have a parametric representation in several complex variables. Chin. Ann. Math. 37B(4), 553–570 (2016) Pell, R.: Support point functions and the Loewner variation. Pac. J. Math. 86, 561–564 (1980) Pfaltzgraff, J.A.: Subordination chains and univalence of holomorphic mappings in \(\mathbb{C}^n\). Math. Ann. 210, 55–68 (1974) Roper, K., Suffridge, T.J.: Convex mappings on the unit ball of \(\mathbb{C}^n\). J. Anal. Math. 65, 333–347 (1995) Schleissinger, S.: On support points of the class \(S^0(B^n)\). Proc. Am. Math. Soc. 142(11), 3881–3887 (2014) Suffridge, T.J.: Starlikeness, Convexity and Other Geometric Properties of Holomorphic Maps in Higher Dimensions. Lecture Notes in Math, vol. 599, pp. 146–159. Springer, New York (1976) Tu, Z.H., Zhang, S.: The Schwarz lemma at the boundary of the symmetrized bidisc. J. Math. Anal. Appl. 459, 182–202 (2018) Xu, Q.H., Liu, T.S.: On the growth and covering theorem for normalized biholomorphic mappings. Chin. Ann. Math. 30(A), 213–220 (2009) Zhang, X.F.: The growth theorems for subclasses of biholomorphic mappings in several complex variables. Cogent Math. 4, 1–11 (2017)