Groups with Exactly Ten Centralizers
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdollahi, A., Jafarian Amiri, S.M., Hassanabadi, A.M.: Groups with specific number of centralizers. Houston J. Math. 33(1), 43–57 (2007)
Ashrafi, A.R.: Counting the centralizers of some finite groups. Korean J. Comput. Appl. Math 7(1), 115–124 (2000)
Ashrafi, A., Taeri, B.: On finite groups with a certain number of centralizers. J. Appl. Math. Comput. 7, 217–227 (2005)
Baishya, S.J.: On finite groups with specific number of centralizers. Int. Electron. J. Algebra 13, 53–62 (2013)
Belcastro, S.M., Sherman, G.J.: Counting centralizers in finite groups. Math. Mag. 5, 111–114 (1994)
Beyl, F.R., Felgner, U., Schmid, P.: On groups occurring as center factor groups. J. Algebra 61(1), 161–177 (1979)
Dolfi, S., Herzog, M., Jabara, E.: Finite groups whose noncentral commuting elements have centralizers of equal size. Bull. Aust. Math Soc. 82, 293–304 (2010)
Foruzanfar, Z., Mostaghim, Z.: On 10-centralizer groups of odd order. ISRN Algebra 2014, 4 (2014). (Article ID 607984)
Jafarian Amiri, S.M., Madadi, H., Rostami, H.: On 9-centralizer groups. J. Algebra Appl 14(1), 1550003 (2015)
Jafarian Amiri, S.M., Madadi, H., Rostami, H.: Finite groups have even more centralizers. Bull. Iran. Math. Soc. 41(6), 1423–1431 (2015)
Jafarian Amiri, S.M., Rostami, H.: Groups with a few non-abelian centralizers. Publ. Math. Debrecen 87(3–4), 429–437 (2015)
Jafarian Amiri, S.M., Amiri, M., Rostami, H.: Finite groups determined by the number of element centralizers. Comm. Algebra. 45(9), 3792–3797 (2017)
Jafarian Amiri, S.M., Rostami, H.: Centralizers and the maximum size of the pairwise non-commuting elements in finite groups. Hacettepe J. Math. 46(2), 193–198 (2017)
Jafarian Amiri, S.M., Amiri, H., Madadi, H.: On the maximum number of the pairwise non-commuting elements in a finite group. J. Algebra Apply 16(1), 1650197 (2017). (9 pages)
Schmidt, R.: Zentralisatorverb $$\ddot{a}$$ a ¨ nde endlicher gruppen. Rend. Sem. Mat. Univ. Padova 44, 97–131 (1970)
The GAP Team, GAP-Groups: Algoritms, and programming, version 4.5. 7 (2012). http://www.gap-system.org . Accessed 13 Feb 2015
Tomkinson, M.J.: Groups covered by finitely many cosets or subgroups. Comm. Algebra 15, 845–859 (1987)
Zarrin, M.: Criteria for the solubility of finite groups by its centralizers. Arch. Math. 96, 225–226 (2011)
Zarrin, M.: On solubility of groups with finitely many centralizers. Bull. Iran. Math. Soc. 39, 517–521 (2013)
Zarrin, M.: On non-commuting sets and centralisers in infinite groups. Bull. Aust. Math. Soc. 93(1), 42–46 (2016)
Zarrin, M.: On noncommuting sets and centralizers in finite groups. Bull. Aust. Math. Soc. 10, 1–5 (2015)