Groups with Exactly Ten Centralizers

Bulletin of the Iranian Mathematical Society - Tập 44 Số 5 - Trang 1163-1170 - 2018
S. M. Jafarian Amiri1, H. Madadi2, Hojjat Rostami3
1Department of Mathematics, Faculty of Sciences, University of Zanjan, Zanjan, 4537138791, Iran
2Department of Mathematics, Miyaneh branch, Islamic Azad University, Miyaneh, Iran
3Department of Education, Molla Sadra Teaching and Training Research Center, Zanjan, 4513858899, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdollahi, A., Jafarian Amiri, S.M., Hassanabadi, A.M.: Groups with specific number of centralizers. Houston J. Math. 33(1), 43–57 (2007)

Ashrafi, A.R.: Counting the centralizers of some finite groups. Korean J. Comput. Appl. Math 7(1), 115–124 (2000)

Ashrafi, A., Taeri, B.: On finite groups with a certain number of centralizers. J. Appl. Math. Comput. 7, 217–227 (2005)

Baishya, S.J.: On finite groups with specific number of centralizers. Int. Electron. J. Algebra 13, 53–62 (2013)

Belcastro, S.M., Sherman, G.J.: Counting centralizers in finite groups. Math. Mag. 5, 111–114 (1994)

Beyl, F.R., Felgner, U., Schmid, P.: On groups occurring as center factor groups. J. Algebra 61(1), 161–177 (1979)

Dolfi, S., Herzog, M., Jabara, E.: Finite groups whose noncentral commuting elements have centralizers of equal size. Bull. Aust. Math Soc. 82, 293–304 (2010)

Foruzanfar, Z., Mostaghim, Z.: On 10-centralizer groups of odd order. ISRN Algebra 2014, 4 (2014). (Article ID 607984)

Jafarian Amiri, S.M., Madadi, H., Rostami, H.: On 9-centralizer groups. J. Algebra Appl 14(1), 1550003 (2015)

Jafarian Amiri, S.M., Madadi, H., Rostami, H.: Finite groups have even more centralizers. Bull. Iran. Math. Soc. 41(6), 1423–1431 (2015)

Jafarian Amiri, S.M., Rostami, H.: Groups with a few non-abelian centralizers. Publ. Math. Debrecen 87(3–4), 429–437 (2015)

Jafarian Amiri, S.M., Amiri, M., Rostami, H.: Finite groups determined by the number of element centralizers. Comm. Algebra. 45(9), 3792–3797 (2017)

Jafarian Amiri, S.M., Rostami, H.: Centralizers and the maximum size of the pairwise non-commuting elements in finite groups. Hacettepe J. Math. 46(2), 193–198 (2017)

Jafarian Amiri, S.M., Amiri, H., Madadi, H.: On the maximum number of the pairwise non-commuting elements in a finite group. J. Algebra Apply 16(1), 1650197 (2017). (9 pages)

Neumann, B.H.: A problem of Paul Erdos on groups. J. Aust. Math. Soc. 21(21), 467–472 (1976)

Schmidt, R.: Zentralisatorverb $$\ddot{a}$$ a ¨ nde endlicher gruppen. Rend. Sem. Mat. Univ. Padova 44, 97–131 (1970)

The GAP Team, GAP-Groups: Algoritms, and programming, version 4.5. 7 (2012). http://www.gap-system.org . Accessed 13 Feb 2015

Tomkinson, M.J.: Groups covered by finitely many cosets or subgroups. Comm. Algebra 15, 845–859 (1987)

Zarrin, M.: Criteria for the solubility of finite groups by its centralizers. Arch. Math. 96, 225–226 (2011)

Zarrin, M.: On element centralizers in finite groups. Arch. Math. 93, 497–503 (2009)

Zarrin, M.: On solubility of groups with finitely many centralizers. Bull. Iran. Math. Soc. 39, 517–521 (2013)

Zarrin, M.: On non-commuting sets and centralisers in infinite groups. Bull. Aust. Math. Soc. 93(1), 42–46 (2016)

Zarrin, M.: On noncommuting sets and centralizers in finite groups. Bull. Aust. Math. Soc. 10, 1–5 (2015)