Groupe modulaire, fractions continues et approximation diophantienne en caractéristique p

Geometriae Dedicata - Tập 95 - Trang 65-85 - 2002
Frédéric Paulin1
1Laboratoire de Mathématiques UMR 8628 CNRS, Equipe de Topologie et Dynamique (Bât. 425), Université Paris-Sud, ORSAY Cedex, France

Tóm tắt

The aim of this paper is to give a geometric interpretation of the continued fraction expansion in the field $$\hat K = \mathbb{F}_q ((X^{ - 1} ))$$ of formal Laurent series in X −1 over $$\mathbb{F}_q $$ , in terms of the action of the modular group $${\text{SL}}_{\text{2}} (\mathbb{F}_q [X])$$ on the Bruhat–Tits tree of $${\text{SL}}_{\text{2}} (\hat K)$$ , and to deduce from it some corollaries for the diophantine approximation of formal Laurent series in X −1 by rational fractions in X.

Tài liệu tham khảo

[BL] Bass, H. et Lubotzky, A.: Tree Lattices, Progr. Math. 176, Birkhäuser, Basel, 2001. [BN] Berthé, V. et Nakada, H.: On continued fraction expansions in positive characteristic: equivalence relations and some metric properties, Exposition. Math. 18 (2000), 257–284. [BH] Bridson, M. R. et Haefliger, A.: Metric Spaces with Non-positive Curvature, Grundlehren Math. Wiss. 319, Springer-Verlag, New York, 1998. [BP] Broise, A. et Paulin, F.: Dynamique sur le rayon modulaire et fractions continues en caractéristique p, pré publication Univ. Orsay, juin 2002. [BT] Bruhat, F. et Tits, J.: Groupes réductifs sur un corps local (données radicielles valuées), Publ. Math. I.H.E.S. 41 (1972), 5–252. [Chr] Christol, G.: Ensembles presques périodiques k-reconnaissables, Theoret. Comput. Sci. 9 (1979), 141–145. [For] Ford, L.: Rational approximations to irrational complex numbers, Trans. Amer. Math. Soc. 99 (1918), 1–42. [HP1] Hersonsky, S. et Paulin, F.: On the rigidity of discrete isometry groups of negatively curved spaces, Comm. Math. Helv. 72 (1997), 349–388. [HP2] Hersonsky, S. et Paulin, F.: Diophantine approximation for negatively curved manifolds, I, ā paraître dans Math. Z. [Laj] Lasjaunias, A.: A survey of diophantine approximation in fields of power series, Monat. Math. 130 (2000), 211–229. [Lio] Liousse, I.: Actions affines sur les arbres reéels, Math. Z. 238 (2001), 401–429. [Mah] Mahler, K.: On a theorem of Liouville in fields of positive characteristic, Canad. J. Math. 1 (1949), 397–400. [Pau] Paulin, F.: Groupes géométriquement finis d'automorphismes d'arbres et approximation diophantienne dans les arbres, prépublication ENS Ulm, septembre 2002. [Sch] Schmidt, W.: On continued fractions and diophantine approximation in power series fields, Acta Arith. XCV (2000), 139–166. [Ser1] Serre, J.-P.: Corps locaux, Hermann, Paris, 1962. [Ser2] Serre, J.-P.: Arbres, amalgames, SL2, Astérisque 46, Soc. Math. France (1983). [Seri] Series, C.: The modular surface and continued fractions, J. London Math. Soc. 31 (1985), 69–80. [Sha1] Shalen, P.: Dendrology of groups: an introduction, Dans: S. M. Gersten (ed.), Essays in Group Theory, M.S.R.I Publ. 8, Springer-Verlag, New York, 1987, pp. 265–319. [Sha2] Shalen, P.: Dendrology and its applications, Dans: E. Ghys, A. Haefliger, et A. Verjovsky (eds), Group Theory from a Geometrical Viewpoint, World Scientific, Singapore, 1991, pp. 543–616.