Group spatiotemporal pattern queries
Tóm tắt
Từ khóa
Tài liệu tham khảo
Geopkdd website geographic privacy-aware knowledge discovery and delivery. http://www.geopkdd.eu
Secondo web site. http://dna.fernuni-hagen.de/secondo.html/
Allen JF (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843. doi: 10.1145/182.358434
Andrienko G, Andrienko N, Wrobel S (2007) Visual analytics tools for analysis of movement data. SIGKDD Explor Newsl 9:38–46. doi: 10.1145/1345448.1345455
Asur S, Parthasarathy S, Ucar D (2009) An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Trans. Knowl. Discov. Data 3(4):16:1–16:36. doi: 10.1145/631162.1631164
Benkert M, Gudmundsson J, Hübner F, Wolle T (2008) Reporting flock patterns. Comput Geom Theory Appl 41(3):111–125. doi: 10.1016/j.comgeo.2007.10.003
Bui-Xuan BM, Ferreira A, Jarry A (2003) Computing shortest, fastest, and foremost journeys in dynamic networks. Int J Found Comput Sci 14(2):267–285. doi: 10.1142/S0129054103001728 . http://www-apr.lip6.fr/~buixuan/files/BFJ03.pdf
Cotelo Lema JA, Forlizzi L, Güting RH, Nardelli E, Schneider M (2003) Algorithms for moving objects databases. Comput J 46(6):680–712
Dodge S, Weibel R, Lautenschütz AK (2008) Towards a taxonomy of movement patterns. Inf Vis 7(3):240–252. doi: 10.1057/palgrave.ivs.9500182
Düntgen C, Behr T, Güting RH (2009) Berlinmod: a benchmark for moving object databases. VLDB J 18(6):1335–1368. doi: 10.1007/s00778-009-0142-5
Eppstein D, Galil Z, Italiano GF (1999) Dynamic graph algorithms. In: Atallah MJ (ed) Algorithms and theory of computation handbook, chap 8. CRC Press. http://www.info.uniroma2.it/italiano/Papers/dyn-survey.ps.Z
Forlizzi L, Güting RH, Nardelli E, Schneider M (2000) A data model and data structures for moving objects databases. In: SIGMOD ’00: proceedings of the 2000 ACM SIGMOD international conference on management of data. ACM, New York, pp 319–330. doi: 10.1145/342009.335426
Güting RH (1993) Second-order signature: a tool for specifying data models, query processing, and optimization. SIGMOD Rec 22(2):277–286. doi: 10.1145/170036.170079
Giannotti F, Nanni M, Pedreschi D, Renso C, Rinzivillo S, Trasarti R (2009) Geopkdd–geographic privacy-aware knowledge discovery. In: The European future technologies conference (FET 2009)
Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: KDD’07, pp 330–339
Gudmundsson J, van Kreveld M, Speckmann B (2004) Efficient detection of motion patterns in spatio-temporal data sets. In: GIS ’04: proceedings of the 12th annual ACM international workshop on geographic information systems. ACM, New York, pp 250–257. doi: 10.1145/032222.1032259
Güting RH, Almeida V, Ansorge D, Behr T, Ding Z, Höse T, Hoffmann F, Spiekermann M, Telle U (2005) secondo: an extensible DBMS platform for research prototyping and teaching. In: ICDE ’05: proceedings of the 21st international conference on data engineering. IEEE Computer Society, Washington, DC, pp 1115–1116
Güting RH, Behr T, Almeida V, Ding Z, Hoffmann F, Spiekermann M (2004) secondo: an extensible DBMS architecture and prototype. Tech Rep Informatik-Report 313 FernUniversität Hagen
Güting RH, Böhlen MH, Erwig M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis M (2000) A foundation for representing and querying moving objects. ACM Trans Database Syst 25(1):1–42. doi: 10.1145/352958.352963
Jeung H, Shen HT, Zhou X (2008) Convoy queries in spatio-temporal databases. In: ICDE ’08: proceedings of the 2008 IEEE 24th international conference on data engineering. IEEE Computer Society, Washington, DC, pp 1457–1459. doi: 10.1109/ICDE.2008.4497588
Kalnis P, Mamoulis N, Bakiras S (2005) On discovering moving clusters in spatio-temporal data. In: SSTD, pp 364–381
Kamath KY, Caverlee J (2011) Transient crowd discovery on the real-time social web. In: Proceedings of the fourth ACM international conference on Web search and data mining, WSDM ’11. ACM, New York, pp 585–594. doi: 10.1145/935826.1935909
Laube P, Imfeld S, Weibel R (2005) Discovering relative motion patterns in groups of moving point objects. Int J Geogr Inf Sci 19(6):639–668
Laube P, Kreveld M, Imfeld S (2004) Finding REMO—detecting relative motion patterns in geospatial lifelines. In: Developments in spatial data handling: proceedings of the 11th international symposium on spatial data handling. Springer, Berlin Heidelberg, pp 201–215. doi: 10.1007/b138045
Li Z, Han J, Ji M, Tang LA, Yu Y, Ding B, Lee JG, Kays R (2011) Movemine: mining moving object data for discovery of animal movement patterns. ACM Trans Intell Syst Technol 2(4):37:1–37:32. doi: 10.1145/989734.1989741
Li Z, Ji M, Lee JG, Tang LA, Yu Y, Han J, Kays R (2010) MoveMine: mining moving object databases. In: SIGMOD ’10: proceedings of the 2010 international conference on management of data. ACM, New York, pp 1203–1206. doi: 10.1145/807167.1807319
Ortale R, Ritacco E, Pelekis N, Trasarti R, Costa G, Giannotti F, Manco G, Renso C, Theodoridis Y (2008) The daedalus framework: progressive querying and mining of movement data. In: GIS, p 52
Pelekis N, Theodoridis Y, Vosinakis S, Panayiotopoulos T (2006) HERMES–a framework for location-based data management. In: Proceedings of EDBT 2006
Ramanathan A, Agarwal PK, Kurnikova M, Langmead CJ (2009) An online approach for mining collective behaviors from molecular dynamics simulations. In: Proceedings of the 13th annual international conference on research in computational molecular biology, RECOMB 2’09. Springer-Verlag, Berlin, Heidelberg, pp 138–154. doi: 10.1007/978-3-642-02008-7_10
Ren C, Lo E, Kao B, Zhu X, Cheng R (2011) On querying historical evolving graph sequences. PVLDB 4(11):726–737
Sakr M (2012) Spatiotemporal pattern queries. Ph.D. thesis, Fern Universität Hagen. http://deposit.fernuni-hagen.de/2814/
Sakr M, Güting RH (2011) Spatiotemporal pattern queries. GeoInformatica 15:497–540. doi: 10.1007/s10707-010-0114-3
Tang LA, Zheng Y, Yuan J, Han J, Leung A, Hung CC, Peng WC (2012) On discovery of traveling companions from streaming trajectories. In: IEEE 28th international conference on data engineering (ICDE) 2012, pp. 186–197. doi: 10.1109/ICDE.2012.33
Trasarti R (2010) Mastering the spatio-temporal knowledge discovery process. Ph.D. thesis, University of Pisa Department of Computer Science, Italy
Trasarti R, Giannotti F, Nanni M, Pedreschi D, Renso C (2011) A query language for mobility data mining. IJDWM 7(1):24–45
Wolfson O, Xu B, Chamberlain S, Jiang L (1998) Moving objects databases: Issues and solutions. In: SSDBM’98: 10th international conference on scientific and statistical database management, pp 111–122
Xiao D, Eltabakh M (2013) Stepq: Spatio-temporal engine for complex pattern queries. In: Nascimento M, Sellis T, Cheng R, Sander J, Zheng Y, Kriegel HP, Renz M, Sengstock C (eds) Advances in spatial and temporal databases, lecture notes in computer science, vol 8098, pp 386–390. Springer Berlin Heidelberg
Zheng K, Zheng Y, Yuan NJ, Shang S, Zhou X (2013) Online discovery of gathering patterns over trajectories. IEEE Trans Knowl Data Eng 99(PrePrints): 1. doi: 10.1109/TKDE.2013.160
Zheng Y, Yuan NJ, Zheng K, Shang S (2013) On discovery of gathering patterns from trajectories. In: Proceedings of the 2013 IEEE international conference on data engineering (ICDE 2013), ICDE ’13. IEEE Computer Society, Washington, DC, pp 242–253. doi: 10.1109/ICDE.2013.6544829