Sự suy diễn lý thuyết lý tưởng về các hạt tự do bằng lý thuyết nhóm
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gamow, G.: Thirty Years That Shook Physics. Doubleday and Co., Garden City, NY (1966)
Felshbach, H., Villars, F.: Elementary relativistic wave mechanics of spin 0 and spin 1/2 particles. Rev. Mod. Phys. 30, 24 (1958)
Barut, A.O., Malin, S.: Position operators and localizability of quantum systems described by finite- and infinite-dimensional wave equations. Rev. Mod. Phys. 40, 632 (1968)
Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. A117, 610 (1928)
Dirac, P.A.M.: A theory of electrons and protons. Proc. R. Soc. A126, 360 (1930)
Dirac, P.A.M.: Quantised singularities in the electromagnetic field. Proc. R. Soc. A133, 60 (1931)
Lévy-Leblond, J.M.: The pedagogical role and epistemological significance of group theory in quantum mechanics. Riv. Nuovo Cim. 4, 99 (1974)
Nisticò, G.: Group theoritical derivation of the minimum coupling principle. Proc. R. Soc. A473, 20160629 (2017)
Nisticò, G.: Group theoretical characterization of wave equations. Int. J. Theor. Phys. 56, 4047 (2017)
Wigner, E.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149 (1939)
Bargmann, V., Wigner, E.P.: Group theoretical discussion of relativistic wave equations. Natl. Acad. Sci. 34, 211 (1948)
Costa, G., Fogli, G.: Lecture Notes in Physics, vol. 823. Springer, New York (2012)
Barut, A.O., Racza, R.: Theory of Group Repesentations and Applications. World Scientific, Singapore (1986)
Jordan, T.F., Mukunda, N.: Lorentz-covariant position operators for spinning particles. Phys. Rev. 132, 1842 (1963)
Kàlnay, A.J.: In: Bunge, M. (ed.) Problems in the Foundations of Physics. Springer, Berlin (1971)
Jadzyck, A.Z., Jancewicz, B.: Maximal localizability of photons. Bull. Acad. Sci. Polon. XXI, 477 (1972)
Bacry, H.: The Poincare group, the Dirac monopole and photon localisation. J. Phys. A 14, L73 (1981)
Bacry, H.: The Position operator revisited. Ann. Inst. H. Poincaré 49, 245 (1988)
Bacry, H.: Localizability and Space in Quantum Physics. Lecture Notes in Physics, vol. 308. Springer, Berlin (1988)
Niederer, U.H., O’Raifeartaigh, L.: Realizations of the unitary representations of the inhomogeneous space-time groups. II. Covariant realizations of the Poincarè group. Fortschr. Phys. 22, 131 (1974)
Simon, B.: In: Lieb, E.H., Simon, B., Wightman, A.S. (ed.) Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann, p. 327. Princeton University Press, Princeton (1976)
Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)
Mackey, G.W.: Induced Representations of Group and Quantum Mechanics. Benjamin Inc., New York (1968)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Academic Press, New York (1978)
Prthasarathy, K.R.: Projective unitary antiunitary representations of locally compact groups. Commun. Math. Phys. 15, 305 (1969)
Cariñena, J.F., Santander, M.: On the projective unitary representations of connected Lie groups. J. Math. Phys. 16, 1416 (1975)
Cariñena, J.F., Santander, M.: Projective covering group versus representation groups. J. Math. Phys. 21, 440 (1980)
Cariñena, J.F., Santander, M.: Antiunitary symmetry operators in quantum mechanics. Int. J. Theor. Phys. 20, 97 (1981)
Nisticò, G.: New representations of poincare group for consistent relativistic particle theories. J. Phys.: Conf. Ser. 1275, 012034 (2019). arXiv:1903.03066
Jordan, T.F.: Simple derivation of the Newton–Wigner position operator. J. Math. Phys. 21, 2028 (1980)
Currie, D.G., Jordan, T.F., Sudarshan, E.C.G.: Relativistic invariance and Hamiltonian theories of interacting particles. Rev. Mod. Phys. 35, 350 (1963)