Bản đồ tiềm năng nước ngầm sử dụng quyết định đa tiêu chí, thống kê nhị biến và thuật toán học máy: bằng chứng từ cao nguyên Chota Nagpur, Ấn Độ

Md. Hasanuzzaman1, Mehedi Hasan Mandal2, Md Hasnine3, Pravat Kumar Shit1
1PG Department of Geography, Raja N. L. Khan Women’s College (Autonomous), Gope Palace, Midnapore, West Bengal, 721102, India
2Department of Geography, Krishnagar Government College, Krishnagar, West Bengal, India
3Department of Geography, Aliah University, Kolkata, India

Tóm tắt

Tóm tắtTăng cường tiêu thụ nguồn nước do sự gia tăng dân số nhanh chóng chắc chắn đã làm giảm trữ lượng nước ngầm dưới lòng đất, dẫn đến một số thách thức cho con người trong thời gian gần đây. Để quản lý tốt nguồn tài nguyên quan trọng này, việc khám phá khu vực tiềm năng nước ngầm (GWPZ) đã trở nên cần thiết. Chúng tôi đã áp dụng Quy trình Phân tích Hierarchy (AHP), Tỷ lệ Tần suất (FR) và hai kỹ thuật học máy cụ thể là Rừng Ngẫu nhiên (RF) và Bayes Ngây thơ (NB) ở đây để xác định GWPZ trong lưu vực sông Gandheswari ở cao nguyên Chota Nagpur, Ấn Độ. Để đạt được mục tiêu của nghiên cứu, mười hai yếu tố xác định sự xuất hiện của nước ngầm đã được chọn để phân tích tương quan giữa các chủ đề và chồng lên vị trí của các giếng. Những yếu tố này bao gồm độ cao, mật độ thoát nước, độ dốc, lý thuyết đất, địa hình, chỉ số ẩm độ địa hình (TWI), khoảng cách từ sông, lượng mưa, mật độ đường nứt, Chỉ số Độ che phủ Thực vật Chuẩn hóa (NDVI), đất và Sử dụng Đất và Độ che phủ (LULC). Tổng cộng 170 điểm, bao gồm 85 điểm ở khu vực giếng và 85 điểm ở khu vực không phải giếng, đã được chọn ngẫu nhiên và phân chia thành hai phần: huấn luyện và kiểm tra với tỷ lệ 70:30. Các phương pháp đã thực hiện đã cung cấp năm GWPZ với độ chính xác cao và chấp nhận được, cụ thể là Rất Tốt (VG), Tốt (G), Trung Bình (M), Kém (P) và Rất Kém (VP). Nghiên cứu cũng tìm thấy rằng địa hình, độ dốc, lượng mưa và độ cao có tầm quan trọng lớn hơn trong việc hình thành GWPZ hơn là LULC, NDVI, v.v. Hiệu suất mô hình đã được kiểm tra bằng các phương pháp đặc tính người nhận (ROC), Độ chính xác (ACC), Hệ số Kappa, MAE, RMSE, v.v. Diện tích dưới đường cong (AUC) trong đường cong ROC đã tiết lộ rằng mức độ chính xác của AHP, FR, RF và NB lần lượt là 78,8%, 81%, 85,3% và 85,5%. Các kỹ thuật học máy kết hợp với AHP và FR tiết lộ việc xác định hiệu quả khu vực tiềm năng nước ngầm trong lưu vực sông đã nói, mà theo gen về mặt lý học cho thấy độ rỗng nguyên thủy thấp do các hạn chế về lý thuyết đất. Do đó, nghiên cứu này có thể hữu ích trong quản lý lưu vực và xác định vị trí phù hợp cho giếng trong tương lai.

Từ khóa


Tài liệu tham khảo

Abijith D, Saravanan S, Singh L, Jennifer JJ, Saranya T, Parthasarathy K (2020) GIS-based multi-criteria analysis for identification of potential groundwater recharge zones - a case study from Ponnaniyaru watershed Tamil Nadu, India. Hydro Research 3:1–14. https://doi.org/10.1016/j.hydres.2020.02.002

Allafta H, Opp C, Patra S (2020) Identification of groundwater potential zones using remote sensing and GIS techniques: a case study of the Shatt Al-Arab Basin. Remot Sens. https://doi.org/10.3390/rs13010112

Arabameri A, Roy J, Saha S, Blaschke T, Ghorbanzadeh O, Bui DT (2019) Application of probabilistic and machine learning models for groundwater potentiality mapping in damghan sedimentary plain Iran. Remote Sens 11(24):3015. https://doi.org/10.3390/rs11243015

Arulbalaj P, Padmalal D, Sreelash K (2019) GIS and AHP Techniques Based Delineation of Groundwater Potential Zones: a case study from Southern Western Ghats. India Scientific Report 9:(2082). https://doi.org/10.1038/s41598-019-38567-x

Band SS, Janizadeh S, Chandra Pal S, Saha A, Chakrabortty R, Mm S, Mosavi A (2020) Novel ensemble approach of deep learning neural network (dlnn) model and particle swarm optimization (pso) algorithm for prediction of gully erosion susceptibility. Sensors 20(19):5609. https://doi.org/10.3390/s20195609

Bhargavi P, Jyothi S (2009) Applying naive bayes data mining technique for classification of agricultural land soils. Int J Comp Sci Net Secur 9(8):117–122

Bhunia G, Keshavarzi A, Shit P, Omran E, Bagherzadeh A (2018) Evaluation of groundwater quality and its suitability for drinking and irrigation using GIS and geostatistics techniques in semiarid region of Neyshabur, Iran. Appl Water Sci. https://doi.org/10.1007/s13201-018-0795-6

Biswas S, Mukhopadhyay BP, Bera A (2020) Delineating groundwater potential zones of agriculture dominated landscapes using GIS based AHP techniques: a case study from Uttar Dinajpur district West Bengal. Environ Earth Sci. https://doi.org/10.1007/s12665-020-09053-9

Central Ground Water Board (2017) Groundwater year book—India 2016–2017. Ministry of Water Resources, River Development and Ganga Rejuvenation. Government of India, New Delhi

Chakrabortty R, Pal CS, Malik S, Das B (2018) Modeling and mapping of groundwater potentiality zones using AHP and GIS technique: a case study of Raniganj Block, Paschim Bardhaman, West Bengal. Model Earth Sys Environ 4:1085–1110. https://doi.org/10.1007/s40808-018-0471-8

Chakraborty B, Roy S, Bera A, Adhikary P, Bera B, Sengupta D et al (2021) Groundwater vulnerability assessment using GIS-based DRASTIC model in the upper catchment of Dwarakeshwar river basin, West Bengal, India. Environ Earth Sci. https://doi.org/10.1007/s12665-021-10002-3

Chen W et al (2017) A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomat Nat Haz Risk 8(2):1955–1977

Chen W, Panahi M, Khosravi K, Pourghasemi HR, Rezaie F, Parvinnezhad D (2019) “Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization. J Hydrol 572:435–448. https://doi.org/10.1016/j.jhydrol.2019.03.013

Das B, Pal SC, Malik S, Chakrabortty R (2018) Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. Geol, Ecol, Landsc 3(3):223–237. https://doi.org/10.1080/24749508.2018.1555740

Díaz-Alcaide S, Martínez-Santos P (2019) Review: advances in groundwater potential mapping. Hydrogeol J 27:2307–2324. https://doi.org/10.1007/s10040-019-02001-3

Dormann CF et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46

Etikala B, Golla V, Li P, Renati S (2019) Deciphering groundwater potential zones using MIF technique and GIS: a study from Tirupati area, Chittoor District, Andhra Pradesh, India. Hydro Res 1:1–7. https://doi.org/10.1016/j.hydres.2019.04.001

Fienen MN, Arshad M (2016) The international scale of the groundwater issue. In: Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo JD, Ross A (eds) Integrated groundwater management. Springer, Cham

Ghosh D, Mandal M, Karmakar M, Banerjee M, Mandal D (2020) Application of geospatial technology for delineating groundwater potential zones in the Gandheswari watershed, West Bengal. Sustain Water Res Manage 6:14. https://doi.org/10.1007/s40899-020-00372-0

Haghizadeh A, Moghaddam DD, Pourghasemi HR (2017) GIS-based bivariate statistical techniques for groundwater potential analysis (an example of Iran). J Earth Syst Sci. https://doi.org/10.1007/s12040-017-0888-x

Hazra N, Mondal M, Sanjib S (2018) Demarcation of groundwater potentiality zones using analytical hierarchy process (Ahp) model with RS & GIS techniques of Paschim Medinipur District in West Bengal. India Int J Cur Adv Res 7(4(M)):12193–12201

Karimi-Rizvandi S, Goodarzi HV, Afkoueieh JH, Chung I-M, Kisi O, Kim S et al (2021) Groundwater-potential mapping using a self-learning bayesian network model: a comparison among metaheuristic algorithms. Water 13:658. https://doi.org/10.3390/w13050658

Khosravi K, Shahabi H, Pham BT, Adamowski J, Shirzadi A, Pradhan B, Dou J, Ly H-B, Gróf G, Ho HL (2019) A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. J Hydrol 573:311–323

Kim JC, Lee S, Jung HS, Lee S (2018) Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang Korea. Geocarto Int 33(9):1000–1015

Kim JC, Jung H-S, Lee S (2019) Spatial mapping of the groundwater potential of the geum river basin using ensemble models based on remote sensing images. Remote Sens 11(19):2285. https://doi.org/10.3390/rs11192285

Kolli MK, Opp C, Groll M (2020) Mapping of potential groundwater recharge zones in the kolleru lake catchment, india, by using remote sensing and gis techniques. Natural Res 11:127–145. https://doi.org/10.4236/nr.2020.113008

Kulkarni H, Aslekar U, Patil S (2018) Groundwater management in india: status, challenges and a framework for responses. In: Mukherjee A (ed) Groundwater of South Asia. Springer Hydrogeology. Springer, Singapore

Lee S, Hyun Y, Lee S, Lee M-j (2017) Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomat Nat Haz Risk 8(2):1185–1203. https://doi.org/10.1080/19475705.2017.1308971

Lee S, Hong S-M, Jung HS (2018) GIS-based groundwater potential mapping using artificial neural network and support vector machine models: the case of boryeong city in Korea. Geocarto Int 33(8):847–861. https://doi.org/10.1080/10106049.2017.1303091

Lee S, Hyun Y, Lee S, Lee M-j (2020) Groundwater potential mapping using remote sensing-based and gis-based machine learning techniques. Remote Sens. https://doi.org/10.3390/rs12071200

Madani A, Niyazi B (2015) Groundwater potential mapping using remote sensing techniques and weights of evidence GIS model: a case study from Wadi Yalamlam basin, Makkah Province Western Saudi Arabia. Environ Earth Sci 74:5129–5142

Magesh NS, Chandrasekar N, Soundranayagam JP (2012) Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing GIS and MIF techniques. Geosci Front. https://doi.org/10.1016/j.gsf.2011.10.007

Maity DK, Mandal S (2019) Identification of groundwater potential zones of the Kumari river basin, India: an RS & GIS based semi quantitative approach. Environ Dev Sustain 21:1013–1034. https://doi.org/10.1007/s10668-017-0072-0

Maskooni EK, Naghibi SA, Hashemi H, Berndtsson R (2020) Application of advanced machine learning algorithms to assess groundwater potential using remote sensing-derived data. Remote Sens 12:2742

Mir SA, Bhat MS, Rather GM, Mattoo D (2021) Groundwater potential zonation using integration of remote sensing and AHP/ANP approach in north kashmir Western Himalaya India. Remote Sens Land 5(1):41–58

Miraki S, Zanganeh SH, Chapi K, Singh VP, Shirzadi A, Shahabi H, Pham BT (2018) Mapping groundwater potential using a novel hybrid intelligence approach. Water Resour Manag 33(1):1–22. https://doi.org/10.1007/s11269-018-2102-6

Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5(1):3–30

Naghibi SA, Pourghasemi HR (2015) A comparative assessment between three machine learning models and their perfor-mance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Res Manag 29(14):5217–5236. https://doi.org/10.1007/s11269-015-1114-8

Naghibi SA, Pourghasemi HR, Pourtaghi ZS et al (2015) Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed Iran. Earth Sci Inform 8:171–186

Naghibi SA, Pourghasemi HR, Dixon B (2016) GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess 188:44

Naghibi SA, Pourghasemi HR, Abbaspour K (2017) A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS. Theor Appl Clim 131(3–4):967–984. https://doi.org/10.1007/s00704-016-2022-4

Nguyen PT, Ha DH, Jaafari A, Nguyen HD, Van Phong T, Al-Ansari N, Prakash I, Van Le H, Pham BT (2020) Groundwater potential mapping combining artificial neural network and real adaboost ensemble technique: the daknong province case-study. Vietnam 17(7):2473. https://doi.org/10.3390/ijerph17072473

Oh H-J, Kim Y-S, Choi J-K, Park E, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol 399(3–4):158–172

Owolabi ST, Madi K, Kalumba AM, Orimoloye IR (2020) A groundwater potential zone mapping approach for semi-arid environments using remote sensing (RS), geographic information system (GIS), and analytical hierarchical process (AHP) techniques:a case study of Buffalo catchment, Eastern Cape South Africa. Arab J Geosci 13:1184

Ozdemir A (2011) GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J Hydrol 411:290–308. https://doi.org/10.1016/J.JHYDROL.2011.10.010

Pal SC, Ghosh C, Chowdhuri I (2020) Assessment of groundwater potentiality using geospatial techniques in Purba Bardhaman district West Bengal. Appl Water Sci. https://doi.org/10.1007/s13201-020-01302-3

Panahi M, Sadhasivam N, Pourghasemi HR, Rezaie F, Lee S (2020) Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). J Hydrol 588:125033. https://doi.org/10.1016/j.jhydrol.2020.125033

Parimala M, Lopez D (2012) Decision making in agriculture based on land suitability- spatial data analysis. Appr J Theoret Appl Info Technol 46:1

Park S, Hamm S-Y, Jeon H-T, Kim J (2017) Evaluation of logistic regression and multivariate adaptive regression spline models for groundwater potential mapping using R and GIS. Sustainability 9(7):1157

Pham B, Jaafari A, Phong T, Mafi-Gholami D, Amiri M, Van Tao N et al (2021) Naïve Bayes ensemble models for groundwater potential mapping. Eco Inform 64:101389. https://doi.org/10.1016/j.ecoinf.2021.101389

Pothiraj P, Rajagopalan B (2013) A GIS and remote sensing based evaluation of groundwater potential zones in a hard rock terrain of Vaigai sub-basin India. Arab J Geosci. https://doi.org/10.1007/s12517-011-0512-3

Pourghasemi HR, Sadhasivam N, Yousefi S, Tavangar S, Nazarlou HG, Santosh M (2020) Using machine learning algorithms to map the groundwater recharge potential zones. J Environ Manage 265:110525

Prasad P, Loveson VJ, Kotha M, Yadav R (2020) Application of machine learning techniques in groundwater potential mapping along the west coast of India. Giscience Remote Sens 57(6):735–752

Rahmati O, Tahmasebipour N, Haghizadeh A, Pourghasemi HR, Feizizadeh B (2017) Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology 298:118–137

Rao PV, Subrahmanyam M, Raju AB (2021) Groundwater exploration in hard rock terrains of East Godavari district Andhra Pradesh, India Using AHP and WIO Analyses Together with Geoelectrical Surveys. AIMS Geosci 7(2):243–267. https://doi.org/10.3934/geosci2021015

Rukhsana HM (2020) Modelling of Potential Sites for Residential Development at South East Peri-Urban of Kolkata. In: Monprapussorn S, Lin Z, Sitthi A, Wetchayont P (eds) Geoinformatics for sustainable development in Asian Cities ICGGS 2018 springer geography. Springer, Cham

Shit P, Bhunia G, Bhattacharya M, Patra B (2019) Assessment of domestic water use pattern and drinking water quality of Sikkim, North Eastern Himalaya, India: a cross-sectional Study. J Geol Soc India 94(5):507–514. https://doi.org/10.1007/s12594-019-1348-9

Sinha M (2016) Gandeshwari rivulet: a geomorphic study, West Bengal. India Social Science Review 2:2

Sinha AK, Kumar V, Singh P (2018) Delineation of groundwater potential zones using remote sensing and geographic information system techniques: a case study of Udaipur district, Rajasthan, India. Int Conf Food Security Sustain Agri 4:265–273

Soni J, Ansari U, Sharma D, Soni S (2011) Predictive data mining for medical diagnosis: an overview of heart disease prediction. Int J Comp Appl 17:43–48

Thapa R, Gupta S, Guin S, Kaur H (2017) Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal. Appl Water Sci 7:4117–4131

Tolche AD (2021) Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin Ethiopia Geology. Ecol, Landsc 5(1):65–80. https://doi.org/10.1080/2474950820201728882

Verma D, Bhunia G, Shit P, Tiwari A (2018) Assessment of groundwater quality of the central gangetic plain area of India using geospatial and WQI techniques. J Geol Soc India 92(6):743–752. https://doi.org/10.1007/s12594-018-1097-1

Wang H, Zhang L, Yin K, Luo H, Li J (2021) Landslide identification using machine learning. Geosci Front 12(1):351–364

Wu X, Kumar V et al (2008) Top 10 algorithms in data mining. Knowl Infor Sys 14:1–37