Grounding‐line dynamics during the last deglaciation of Kveithola, W Barents Sea, as revealed by seabed geomorphology and shallow seismic stratigraphy

Boreas - Tập 42 Số 1 - Trang 84-107 - 2013
Lilja Rún Bjarnadóttir1, Denise Christina Rüther1, Monica Winsborrow1, Karin Andreassen1
1Department of Geology University of Tromsø Dramsveien 201 N‐9037 Tromsø Norway

Tóm tắt

A marine geophysical study reveals a complex deglaciation pattern in the Kveithola trough, W Barents Sea. The data set includes multibeam swath bathymetry and sub‐bottom sediment profiler (chirp) data acquired for the whole extent of a palaeo, marine‐terminating ice stream, along with high‐resolution single‐channel seismic data from chosen profiles. The multibeam data show a geomorphic landform assemblage characteristic of ice streams. The results of a combination of seismic and chirp unit stratigraphy reveal that the seabed geomorphology is governed by a deeper‐lying reflector. The reflector dominates surface expressions of several subglacial and ice‐marginal units, each connected to a separate episode of ice‐margin stillstand/advance. Analysis of the combined data set has resulted in a conceptual model of the ice‐stream retreat. The model depicts complex deglaciation of a small, confined ice‐stream system through episodic retreat. It describes the formation of several generations of grounding‐zone systems, characterized by high meltwater discharges and the deposition of fine‐grained grounding‐line fans. The inferred style of grounding‐zone deposition in Kveithola deviates from that of other accounts, and is suggested to be intermediate in the previously described continuum between morainal banks and grounding‐line wedges. The results of this paper have implications for grounding‐zone theory and should be of interest to modellers of grounding‐line dynamics and ice‐stream retreat.

Từ khóa


Tài liệu tham khảo

10.1126/science.1138396

10.1017/S0022143000016336

10.1038/322057a0

10.1029/JB092iB09p08921

10.1029/JB092iB09p08931

10.1126/science.1138393

10.1126/science.1140766

10.1016/S0277-3791(01)00083-X

Anderson J. B., 2001, Footprint of the expanded West Antarctic Ice Sheet: ice stream history and behaviour, Geological Society of America Today, 11, 4

10.1016/j.geomorph.2007.02.050

10.1130/G20497.1

Andreassen K., 2007, Seismic Geomorphology: Application to Hydrocarbon Exploration and Production, 151

10.1126/science.287.5456.1248

Bell R. E., 2008, The role of subglacial water in ice‐sheet mass balance, Nature, 1, 297

10.1016/j.earscirev.2007.02.002

Benn D. I., 2010, Glaciers and Glaciation

10.1016/S0012-8252(02)00130-7

10.1126/science.1125226

10.1029/AR077p0123

10.1016/0025-3227(94)90005-1

10.1029/AR077p0105

10.1016/j.earscirev.2008.01.008

Brown C. S. Meier M. F.&Post A.1982:The calving speed of Alaskan tidewater glaciers with application to Columbia Glacier.U.S. Geological Survey Professional Paper 1258‐C 1–13.

10.1130/0091-7613(2000)028<0031:DSEOPI>2.0.CO;2

10.3189/172756503781830719

10.1016/j.marpetgeo.2004.12.008

10.1038/nature10902

10.1130/G30621.1

10.1130/G24808A.1

10.1016/S0921-8181(01)00135-7

10.1029/2008GL034432

10.1016/j.quascirev.2010.05.026

10.1046/j.1468-8123.2002.00028.x

http://www.olex.no2010:A fisheries database of echosoundings.

10.1017/S0022143000034894

10.1029/2006JF000603

10.2307/520781

10.1130/G32153.1

10.1029/2008GL033520

10.1016/j.quascirev.2010.02.020

10.1016/0278-4343(92)90070-Z

10.1029/AR077p0157

King E. C., 2009, Formation of mega‐scale glacial lineations observed beneath a West Antarctic ice stream, Nature, 2, 585

10.1007/s003670050068

10.1126/science.283.5407.1522

10.1016/j.earscirev.2011.10.003

10.1007/978-94-007-2162-3_65

10.1016/j.quascirev.2006.03.010

10.1038/271321a0

10.1016/j.quascirev.2005.12.013

10.1038/nature02805

10.1002/esp.1672

10.1016/j.quascirev.2004.10.006

10.1002/esp.1669

10.1029/2006JF000606

10.1029/2001GLO14488

10.1029/2004GL021284

10.1016/j.quascirev.2004.01.006

10.1016/S1040-6182(01)00056-8

10.1016/0025-3227(84)90194-4

10.1144/GSL.SP.1990.053.01.03

Powell R. D., 1997, Grounding‐line systems: processes, glaciological inferences and the stratigraphic record. Geology and seismic stratigraphy of the Antarctic margin, Part 2, Antarctic Research Series, 71, 169

Powell R. D., 2002, Modern and Past Glacial Environments, 445

10.1016/0025-3227(89)90160-6

10.1029/2005JD006079

10.1016/j.yqres.2006.07.002

Rebesco M., 2008, Developments in Sedimentology Series 60, 688

10.1016/j.margeo.2010.10.018

10.1017/S0033822200034202

10.1126/science.281.5376.549

10.1016/j.quascirev.2011.06.011

10.1111/j.1502‐3885.2011.00244.x

Sættem J., 1994, Formation and Deformation of Glacial Deposits, 95

10.1080/10641199109379893

10.1029/2006JF00664

10.1016/S1040-6182(01)00089-1

10.1029/2004GL021106

10.1126/science.291.5505.862

10.1130/0016-7606(1999)111<1486:LPHROT>2.3.CO;2

Shipp S., 2002, Glacier‐Influenced Sedimentation on High‐Latitude Continental Margins, 277

Sigmond E. M. O.2002:Geological Map of Land and Sea Areas of Northern Europe Scale 1:4 million. Geological Survey of Norway Trondheim.

10.1016/j.quascirev.2008.04.015

10.3189/172756499781821625

10.1016/S0277-3791(01)00003-8

10.1111/j.1502-3885.2002.tb01070.x

10.1017/S0033822200013904

10.1126/science.1141111

10.1029/PA003i005p00601

10.1144/GSL.SP.1996.111.01.20

10.1016/j.geomorph.2005.05.015

10.3189/172756501781832043

10.1016/j.quascirev.2009.10.001

10.1130/B30416.1

10.1111/j.1751-8369.1995.tb00693.x

10.1038/35021035

10.1126/science.1072708