Ground-penetrating radar survey of subsurface features at the margin of ice sheet, East Antarctica

Journal of Applied Geophysics - Tập 206 - Trang 104816 - 2022
Yinke Dou, Yang Sun, Lei Fu, Xueyuan Tang, Juncheng Liu, Qi Lu, Jingxue Guo, Sixin Liu, Yuchen Wang, Lin Li, Guitao Shi, Wangxiao Yang

Tóm tắt

The subglacial environment of East Antarctica remains largely unexplored. In this study, ground-penetrating radar (GPR) data of the ice-sheet margin in East Antarctica were collected and analysed, an average velocity of 0.18 m/ns was obtained through ice density conversion and common midpoint (CMP) survey. The thickness, internal layers, and bed elevation were used to determine the spatial characteristics of snow/firn in the survey area. The relative amplitudes of the reflections along the bedrock interface were computed to determine the potential presence of subglacial water in depressions, which is the most likely source of strong reflections at basal interfaces. Because the subglacial topography is associated with the dynamic characteristics of the ice sheet, the two-parameter roughness index was used to assess the regional roughness of the bedrock beneath the snow/firn and discuss the implications of changes at the bottom. This research provides insights into the physical characteristics of ice-sheet margins. The methodology proposed in this study should be applied in the future to quantify the physical parameters required for ice-sheet studies.

Từ khóa

#Ground penetrating radar #Antarctica #Ice sheet margin #Thickness #Amplitude #Roughness

Tài liệu tham khảo

Annan, A. P. & Davis, J. L., 1976. Impulse Radar Soundings in Permafrost, Radio Science, 11(4), 383-394. Arcone, S., and Jacobel, R., 2010. Unconformities, cosets, and folds within the East Antarctic ice sheet: 3.2 MHz profiles from a megadunes region of East Antarctica. In 2012 14th International Conference on Ground Penetrating Radar (GPR). IEEE, pp. 718–723. Austermann, J., Pollard, D., Mitrovica, J.X., Moucha, R., Forte, A.M., DeConto, R.M., Rowley, D.B. & Raymo, M.E., 2015. The impact of dynamic topography change on Antarctic ice sheet stability during the mid-Pliocene warm period, Geology, 43, 927-930, doi: 10.1130/g36988.1. Bell, R.E. & Seroussi, H., 2020. History, mass loss, structure, and dynamic behavior of the Antarctic Ice Sheet, Science, 367, 1321-1325, doi: 10.1126/science.aaz5489. Bentley, C.R., 1964. Solid Earth and Interface Phenomena. The structure of Antarctica and its ice cover: Research in Geophysics, Vol. 2 335-389, MIT Press. Bingham, R.G. & Siegert, M.J., 2009. Quantifying subglacial bed roughness in Antarctica: implications for ice-sheet dynamics and history, Quaternary Science Reviews, 28, 223-236, doi: 10.1016/j.quascirev.2008.10.014. Capozzoli, L., Giampaolo, V., Rizzo, E., Votta, M., Cucci, P. L., Biase, M. D., & Straface, S., 2012. Ground penetrating radar as a powerful tool for the study and the monitoring of LNAPL-contamination in the subsoil., GNGTS, 60-67. Carter, S.P., Blankenship, D.D., Peters, M.E., Young, D.A., Holt, J.W., Morse, D.L., 2007. Radar-based subglacial lake classification in Antarctica: ANTARCTIC SUBGLACIAL LAKES. Geochem. Geophys. Geosyst. 8, n/a-n/a. doi:10.1029/2006GC001408. Dahl-Jensen, D., et al., 2013. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493(7433), 489–494. Davis, J.L. & Annan, A. P., 1989. Ground Penetrating Radar for High-Resolution Mapping of Soil and Rock Stratigraphy. Geophysical Prospecting, 37 (5), 531-551. DeConto, R.M. & Pollard, D., 2016. Contribution of Antarctica to past and future sea-level rise, Nature, 531, 591-597, doi: 10.1038/nature17145. Feldmann, J., Levermann, A. & Mengel, M., 2019. Stabilizing the West Antarctic Ice Sheet by surface mass deposition, Science Advances, 5, doi: 10.1126/sciadv.aaw4132. Fisher, E., McMechan, G. A. & Annan, A. P., 1992. Acquisition and processing of wide-aperture ground penetrating radar data. Geophysics, 57(3), 495-504. Fitzsimons, S.J. & Colhoun, E. A., 1995. Form, structure and stability of the margin of the Antarctic ice sheet, Vestfold Hills and Bunger Hills, East Antarctica. Antarctic Science, 7(2), 171-179. Fogwill, C.J. et al., 2017. Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination, Scientific Reports, 7(1), doi: 10.1038/srep39979. Fretwell, P. et al., 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7(1), 375-393. Fujita, S. et al., 2011. Spatial and temporal variability of snow accumulation rate on the East Antarctic ice divide between Dome Fuji and EPICA DML, The Cryosphere, 5, 1057-1081. doi:10.5194/tc-5-1057-2011. Gasson, E.G.W. & Keisling, B.A. 2020. The Antarctic Ice Sheet A Paleoclimate Modeling Perspective, Oceanography, 33, 90-100, doi: 10.5670/oceanog.2020.208. Guo, J. et al., 2020. Historical surface mass balance from a frequency- modulated continuous-wave (FMCW) radar survey from Zhongshan station to Dome A, Journal of Glaciology, 1–13, doi: 10.1017/jog.2020.58. Hubbard, B., Siegert, M. J. & McCarroll, D., 2000. Spectral roughness of glaciated bedrock geomorphic surfaces: Implications for glacier sliding. Journal of Geophysical Research: Space Physics, 105(B9), 21295-21303. Huybrechts, P. & Wolde, J. D., 1999. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. Journal of Climate, 12(8), 2169-2188. Ingolfsson O., 2004. Quaternary glacial and climate history of Antarctica, Developments in Quaternary Science, 2(4), 3-43. Jacobs, S., Jenkins, A., Hellmer, H., Giulivi, C., Nitsche, F., Huber, B. & Guerrero, R., 2012. The Amundsen Sea and the Antarctic Ice Sheet, Oceanography, 25, 154-163, doi: 10.5670/oceanog.2012.90. Jamieson, S.S.R., Stokes, C.R., Ross, N., Rippin, D.M., Bingham, R.G., Wilson, D.S., Margold, M. & Bentley, M.J., 2014. The glacial geomorphology of the Antarctic ice sheet bed, Antarctic Science, 26, 724-741, doi: 10.1017/s0954102014000212. Joughin, I. & Alley, R.B., 2011. Stability of the West Antarctic ice sheet in a warming world, Nature Geoscience, 4, 506-513, doi: 10.1038/ngeo1194. Kanagaratnam, P., Gogineni, S. P., Gundestrup, N. & Larsen, L., 2001. High-resolution radar mapping of internal layers at the North Greenland Ice Core Project, Journal of Geophysical Research, 106(D24), 33799-33811. Karlsson, N.B., Colgan, W.T., Binder, D., Machguth, H., Abermann, J., Hansen, K. & Pedersen, A.O., 2019. Ice-penetrating radar survey of the subsurface debris field at Camp Century, Greenland. Cold Regions Science and Technology, 165, doi: 10.1016/j.coldregions.2019.102788. Langley, K., von Deschwanden, A., Kohler, J., Sinisalo, A., Matsuoka, K., Hattermann, T., Humbert, A., Nøst, O. A. & Isaksson, E., 2014. Complex network of channels beneath an Antarctic ice shelf, Geophysical Research Letters, 41(4), 1209-1215. doi:10.1002/ 2013GL058947 Le Meur, E., Magand, O., Arnaud, L., Fily, M., Frezzotti, M., Cavitte, M., Mulvaney, R. & Urbini, S., 2018. Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis, The Cryosphere, 12, 1831-1850, doi: 10.5194/tc-12-1831-2018. Levy, R. et al., 2016. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene. Proceedings of the National Academy of Sciences, 113, 3453-3458, doi: 10.1073/pnas.1516030113. Li, X. et al., 2010. Characterization of subglacial landscapes by a two-parameter roughness index, Journal of Glaciology, 56, 831-836, doi: 10.3189/002214310794457326. Looyenga, H., 1965. Dielectric constants of heterogeneous mixtures. Physica, 31(3), 401-406. Meyer, C.R. & Minchew, B. M., 2018. Temperate ice in the shear margins of the Antarctic Ice Sheet: Controlling processes and preliminary locations. Earth and Planetary Science Letters, 498, 17-26. Morlighem, M. et al., 2020. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nature Geoscience, 13, 132-137, doi: 10.1038/s41561-019-0510-8. Müeller, K., Sinisalo, A., Anschüetz, H., Hamran, S.-E., Hagen, J.-O., McConnell, J.R. & Pasteris, D.R., 2010. An 860 km surface mass-balance profile on the East Antarctic plateau derived by GPR, Annals of Glaciology, 51, 1-8. Palerme, C., Genthon, C., Claud, C., Kay, J.E., Wood, N.B. & L'Ecuyer, T., 2017. Evaluation of current and projected Antarctic precipitation in CMIP5 models. Climate Dynamics, 48, 225-239, doi: 10.1007/s00382-016-3071-1. Popov, S., 2020. Fifty-five years of Russian radio-echo sounding investigations in Antarctica. Annals of Glaciology, 61, 14-24, doi: 10.1017/aog.2020.4. Pritchard, H.D., Arthern, R.J., Vaughan, D.G. & Edwards, L.A., 2009. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets, Nature, 461, 971-975, doi: 10.1038/nature08471. Rebesco, M., Camerlenghi, A. 2007. Does the late Pliocene change in the architecture of the Antarctic margin correspond to the transition to the modern Antarctic Ice Sheet?, U.S.Geological Survey and The National Academies, USGS OF-2007-1047, doi: 10.3133/of2007-1047.srp021. Schaap, T., Roach, M. J., Peters, L. E., Cook, S., Kulessa, B. & Schoof, C., 2019. Englacial drainage structures in an East Antarctic outlet glacier, Journal of Glaciology, 66(125), 166-174, doi: 10.1017/ jog.2019.92. Schoof, C., 2007. Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. Journal of Geophysical Research, 112, doi: 10.1029/2006jf000664. Schroeder, D.M. et al., 2020. Five decades of radioglaciology, Annals of Glaciology, 61, 1-13, doi: 10.1017/aog.2020.11. Siegert, M.J., 2008. Antarctic subglacial topography and ice-sheet evolution. Earth Surface Processes and Landforms, 33, 646-660, doi: 10.1002/esp.1670. Siegert, M.J., Taylor, J., Payne, A. J. & Hubbard, B., 2004. Macro-scale bed roughness of the Siple Coast ice streams in West Antarctica, Earth Surface Processes and Landforms, 29(13), 1591-1596. Verfaillie, D., Fily, M., Le Meur, E., Magand, O., Jourdain, B., Arnaud, L. & Favier, V., 2012. Snow accumulation variability derived from radar and firn core data along a 600 km transect in Adelie Land, East Antarctic plateau, The Cryosphere, 6, 1345-1358, doi: 10.5194/tc-6-1345-2012. Watts, R.D., England, A.W., 1976. Radio-echo sounding of temperate glaciers: ice properties and soungerr gersign criteria. J. Glaciol. 17, 39–48. doi:10.1017/S0022143000030707.