Ground States in the Spin Boson Model

Annales Henri Poincaré - Tập 12 Số 4 - Trang 621-677 - 2011
David Hasler1, Ira Herbst2
1Department of Mathematics, College of William and Mary, Williamsburg, VA 23187-8795, USA
2Department of Mathematics, University of Virginia, Charlottesville VA 22904-4137, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arai A., Hirokawa M.: On the existence and uniqueness of ground states of a generalized spin-boson model. J. Funct. Anal. 151, 455–503 (1997)

Bach V., Chen T., Fröhlich J., Sigal I.M.: Smooth Feshbach map and operator-theoretic renormalization group methods. J. Funct. Anal. 203, 44–92 (2003)

Bach V., Fröhlich J., Pizzo A.: Infrared-finite algorithms in QED: the groundstate of an atom interacting with the quantized radiation field. Commun. Math. Phys. 264, 145–165 (2006)

Bach V., Fröhlich J., Pizzo A.: Infrared-finite algorithms in QED. II. The expansion of the groundstate of an atom interacting with the quantized radiation field. Adv. Math. 220, 1023–1074 (2009)

Bach V., Fröhlich J., Sigal I.M.: Renormalization group analysis of spectral problems in quantum field theory. Adv. Math. 137, 205–298 (1998)

Bach V., Fröhlich J., Sigal I.M.: Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field. Commun. Math. Phys. 207, 249–290 (1999)

Barbaroux, J-M., Chen, T., Vugalter, S., Vougalter, V.: Quantitative estimates on the Hydrogen ground state energy in non-relativistic QED. $${\tt mp\_arc 09-48}$$ . Ann. Henri Poincar. 11(8), 1487–1544 (2010)

Catto I., Hainzl C.: Self-energy of one electron in non-relativistic QED. J. Funct. Anal. 207, 68–110 (2004)

Dixmier, J.: Von Neumann Algebras. Translated from the second French edition by F. Jellett. North-Holland Mathematical Library, vol. 27. North-Holland Publishing Co., Amsterdam (1981)

Griesemer M., Lieb E., Loss M.: Ground states in non-relativistic quantum electrodynamics. Invent. Math. 145, 557–595 (2001)

Fröhlich J.: On the infrared problem in a model of scalar electrons and massless, scalar bosons. Ann. Inst. H. Poincar Sect. A (N.S.) 19, 1–103 (1973)

Gérard C.: On the existence of ground states for massless Pauli-Fierz Hamiltonians. Ann. Henri Poincaré 1, 443–459 (2000)

Griesemer M., Hasler D.: On the smooth Feshbach-Schur Map. J. Funct. Anal. 254, 2329–2335 (2008)

Griesemer M., Hasler D.: Analytic perturbation theory and renormalization analysis of matter coupled to quantized radiation. Ann. Henri Poincaré 10, 577–621 (2009)

Hainzl C., Hirokawa M., Spohn H.: Binding energy for hydrogen-like atoms in the Nelson model without cutoffs. J. Funct. Anal. 220, 424–459 (2005)

Hasler D., Herbst I.: Absence of ground states for a class of translation invariant models of non-relativistic QED. Commun. Math. Phys. 279, 769–787 (2008)

Hübner M., Spohn H.: Spectral properties of the spin-boson Hamiltonian. Ann. Inst. H. Poincaré Phys. Théor. 62, 289–323 (1995)

Kato T.: Perturbation Theory for Linear Operators, pp. 75–80. Springer-Verlag, New York (1966)

Lörinczi J., Minlos R.A., Spohn H.: The infrared behaviour in Nelson’s model of a quantum particle coupled to a massless scalar field. Ann. Henri Poincaré 3(2), 269–295 (2002)

Reed M., Simon B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)

Schweber S.: An Introduction to Relativistic Quantum Field Theory. Foreword by Hans A. Bethe. Row, Peterson and Company, Evanston (1961)

Simon B.: The $${P(\phi )_{2}}$$ Euclidean (quantum) Field Theory. Princeton Series in Physics. Princeton University Press, Princeton (1974)

Spohn H., Dümcke R.: Quantum tunneling with dissipation and the Ising model over R. J. Stat. Phys. 41, 389–423 (1985)

Spohn H.: Ground state(s) of the spin-boson Hamiltonian. Commun. Math. Phys. 123, 277–304 (1989)

Spohn H.: Ground state of a quantum particle coupled to a scalar Bose field. Lett. Math. Phys. 44, 9–16 (1998)