Ground-State Structures of the Ising Model on a Layered Triangular Lattice in a Magnetic Field
Tóm tắt
The magnetic structures of the ground state, as well as magnetic and thermodynamic properties of the antiferromagnetic Ising model on a layered lattice, are investigated based on the replica-exchange Monte Carlo algorithm with account for the exchange interactions of the next-to-nearest neighbors. The magnetic structures of the ground state in an external magnetic field interval 0 ≤ h ≤ 16 are obtained. It is found that in this magnetic field interval, a disordered, a partly ordered, and a fully ordered phases are observed. It is shown that the magnetic structures of the ground state depend on the sign (ferromagnetic, J2 > 0, and antiferromagnetic, J2 < 0) of the exchange interaction of second neighbors. The magnetic-field dependence of the magnetization has a plateau equal to 1/3 of the saturation magnetization for J2 > 0 and 1/2 of the saturation magnetization for J2 < 0.
Tài liệu tham khảo
Q. A. Pankhurst, J. Connolly, S. K. Jones, et al., J. Phys. D: Appl. Phys. 36, 167 (2003).
A. Jabar, R. Masrour, G. Kadim, et al., Commun. Theor. Phys. 73, 115702 (2021).
T. Sahdane, R. Masrour, and A. Jabar, Phys. A (Amsterdam, Neth.) 572, 125882 (2021).
Y. El Krimi, R. Masrour, and A. Jabar, Mater. Today Energy 20, 100685 (2021).
S. D. Bader, Rev. Mod. Phys. 78, 1 (2006).
A. N. Berker, G. S. Grest, C. M. Soukoulis, et al., J. Appl. Phys. 55, 2416 (1984).
D. Blankschtein, M. Ma, A. N. Berker, et al., Phys. Rev. B 29, 5250 (1984).
S. N. Coppersmith, Phys. Rev. B 32, 1584 (1985).
A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, J. Exp. Theor. Phys. 105, 1011 (2007).
A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, J. Exp. Theor. Phys. 115, 303 (2012).
O. Heinonen and R. G. Petschek, Phys. Rev. B 40, 9052 (1989).
J.-J. Kim, Y. Yamada, and O. Nagai, Phys. Rev. B 41, 4760 (1990).
R. R. Netz and A. N. Berker, Phys. Rev. Lett. 66, 377 (1991).
H. T. Diep, Frustrated Spin Systems (World Scientific, Singapore, 2004).
Y. B. Kudasov, Phys. Rev. Lett. 96, 027212 (2006).
O. A. Starykh, Rep. Prog. Phys. 78, 052502 (2015).
H. Shiba, Prog. Teor. Phys. 64, 466 (1980).
M. Kaburagi, T. Tonegawa, and J. Kanamori, J. Phys. Soc. Jpn. 51, 3857 (1982).
P. Matsubara and S. Ikeda, Phys. Rev. B 28, 4064 (1983).
D. M. Blankschtein and A. N. Berker, Phys. Rev. B 29, 5250 (1984).
D. T. Liu, F. J. Burnell, L. D. C. Jaubert, et al., Phys. Rev. B 94, 224413 (2016).
A. K. Murtazaev, M. K. Badiev, M. K. Ramazanov, et al., Phys. A (Amsterdam, Neth.) 555, 124530 (2020).
A. K. Murtazaev, M. K. Ramazanov, F. A. Kassan-Ogly, and M. K. Badiev, J. Exp. Theor. Phys. 117, 1091 (2013).
A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Phys. A (Amsterdam, Neth.) 507, 210 (2018).
A. K. Murtazaev, M. K. Ramazanov, K. S. Murtazaev, et al., Phys. Solid State 62, 229 (2020).
A. K. Murtazaev, M. K. Badiev, M. K. Ramazanov, et al., Phase Trans. 94, 394 (2021).
M. K. Badiev, A. K. Murtazaev, and M. K. Ramazanov, J. Exp. Theor. Phys. 123, 623 (2016).
M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, Phys. A (Amsterdam, Neth.) 521, 543 (2019).
A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymers (Peptide Sci.) 60, 96 (2001).
A. I. Smirnov, H. Yashiro, S. Kimura, et al., Phys. Rev. B 75, 134412 (2007).
Y. Shirata, Tanaka H, A. Matsuo, et al., J. Phys. Soc. Jpn. 80, 093702 (2011).
J. Hwang, E. S. Choi, F. Ye, et al., Phys. Rev. Lett. 109, 257205 (2012).