Các Tính Chất Rối Tĩnh Trạng Cơ Bản Của Nguyên Tử Heli Trong Một Khoang Hình Cầu Hữu Hạn

Few-Body Systems - Tập 56 - Trang 645-649 - 2015
Przemysław Kościk1, Jayanta K. Saha2
1Institute of Physics, Jan Kochanowski University, Kielce, Poland
2Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India

Tóm tắt

Các hiệu ứng của sự giam giữ không gian lên các tính chất rối tĩnh trạng cơ bản của nguyên tử heli đã được nghiên cứu. Tiềm năng dao động hữu hạn được sử dụng để biểu diễn tiềm năng giam giữ. Sự chuyển tiếp sang chế độ nguyên tử tự do và chế độ giam giữ hài hòa được thảo luận chi tiết tùy thuộc vào các tham số điều khiển của hệ thống.

Từ khóa

#helium atom #entanglement properties #spatial confinement #oscillator potential #harmonic confinement

Tài liệu tham khảo

Jaskólski W.: Confined many-electron systems. Phys. Rep. 271, 1 (1996) Sil A.N., Canuto S., Mukherjee P.K.: Spectroscopy of confined atomic systems: effect of plasma. Adv. Quantum Chem. 58, 115 (2009) Aquino N., Flores-Riveros A., Rivas-Silva J.F.: The compressed helium atom variationally treated via a correlated Hylleraas wave function. Phys. Lett. A 307, 326 (2003) Montgomery H.E. Jr, Aquino N., Flores-Riveros A.: The ground state energy of a helium atom under strong confinement. Phys. Lett. A 374, 2044 (2010) Flores-Riveros A., Aquino N., Montgomery H.E. Jr: Spherically compressed helium atom described by perturbative and variational methods. Phys. Lett. A 374, 1246 (2010) Flores-Riveros A., Rodriguez-Contreras A.: Compression effects in helium-like atoms (Z = 1,...,5) constrained by hard spherical walls. Phys. Lett. A 372, 6175 (2008) Wilson C.L., Montgomery H.E. Jr, Sen K.D., Thompson D.C.: Electron correlation energy in confined two-electron systems. Phys. Lett. A 374, 4415 (2010) Bhattacharyya S., Saha J.K., Mukherjee P.K., Mukherjee T.K.: Precise estimation of the energy levels of two-electron atoms under spherical confinement. Phys. Scr. 87, 065305 (2013) Montgomery H.E. Jr, Pupyshev V.I.: Confined helium: excited singlet and triplet states. Phys. Lett. A 377, 2880 (2013) Laughlin C., Chu S.I.: A highly accurate study of a helium atom under pressure. J. Phys. A Math. Theor. 42, 265004 (2009) Sako T., Diercksen G.H.F.: Confined quantum systems: spectral properties of the atoms helium and lithium in a power series potential. J. Phys. B At. Mol. Opt. Phys. 36, 1433 (2003) Sako T., Diercksen G.H.F.: Confined quantum systems: a comparison of the spectral properties of the two-electron quantum dot, the negative hydrogen ion and the helium atom. J. Phys. B: At. Mol. Opt. Phys. 36, 1681 (2003) Wen- Fang X.: A helium atom confined by a spherical Gaussian potential well. Commun. Theor. Phys. 49, 1287 (2008) Dehesa J.S. et al.: Quantum entanglement in helium. J. Phys. B At. Mol. Opt. Phys. 45, 015504 (2012) Benenti, G., Siccardi, S., Strini, G.: Entanglement in helium. Eur. Phys. J. D 67, 83 (2013) Lin Y., Lin C., Ho Y.K.: Spatial entanglement in two-electron atomic systems. Phys. Rev. A 87, 022316 (2013) Lin C.H., Lin Y.C., Ho Y.K.: Quantification of linear entropy for quantum entanglement in He, H- and Ps- ions using highly-correlated Hylleraas functions. Few-Body Syst. 54, 2147 (2013) Kościk P., Okopińska A.: Entanglement entropies in the ground states of helium-like atoms. Few-Body Syst. 55, 1151 (2014) Lin C.H., Ho Y.K.: Quantification of entanglement entropy in helium by the Schmidt-Slater decomposition method. Few-Body Syst. 55, 1141 (2014) Lin C.H., Ho Y.K.: Calculation of von Neumann entropy for hydrogen and positronium negative ions. Phys. Lett. A 378, 2861 (2014) Kościk P.: Entanglement in S states of two-electron quantum dots with Coulomb impurities at the center. Phys, Lett. A 377, 2393 (2013) Kimani P., Jones P., Winkler P.: Correlation studies in weakly confining quantum dot potent. Int. J. Quantum Chem. 108, 2763 (2008) Chakraborty S., Ho Y.K.: Autoionization resonance states of two-electron atomic systems with finite spherical confinement. Phys. Rev A 84, 032515 (2011) Lin C.Y., Ho Y.K.: Photoionization cross sections of hydrogen impurities in spherical quantum dots using the finite-element discrete-variable representation. Phys. Rev A 84, 023407 (2011) Ghirardi G., Marinatto L.: General criterion for the entanglement of two indistinguishable particles. Phys. Rev. A 70, 012109 (2004) Paškauskas R., You L.: Quantum correlations in two-boson wave functions. Phys. Rev. A 64, 042310 (2001) Buscemi F., Bordone P., Bertoni A.: Linear entropy as an entanglement measure in two-fermion systems. Phys. Rev. A 75, 032301 (2007) Davidson E.R.: Natural expansions of exact wavefunctions. III. The helium-atom ground state. J. Chem. Phys. 39, 875 (1964) Davidson E.R.: Properties and uses of natural orbitals. Rev. Mod. Phys. 44, 451 (1972) Wang J., Law C.K., Chu M.C.: S-wave quantum entanglement in a harmonic trap. Phys. Rev. A 72, 022346 (2005)