Gromov’s Amenable Localization and Geodesic Flows
Tóm tắt
Từ khóa
Tài liệu tham khảo
Allpert, H., Katz, G.: Using simplicial volume to count multi-tangent trajectories of traversing vector fields, Geometriae Dedicata (2015). https://doi.org/10.1007/s10711-015-0104-6. arXiv:1503.02583v1 [math.DG]
Gromov, M.: Volume and bounded cohomology. Publ. Math. I.H.E.S. Tome 56, 5–99 (1982)
Gromov, M.: Singularities, Expanders and Topology of Maps. Part I: Homology versus Volume in the Spaces of Cycles, Geometric and Functional Analysis, vol. 19, pp. 743–841 (2009)
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Katz, G.: Stratified convexity & concavity of gradient flows on manifolds with boundary. Appl. Math. 5, 2823–2848 (2014)
Katz, G.: Traversally generic & versal flows: semi-algebraic models of tangency to the boundary. Asian J. Math. 21(1), 127–168 (2017)
Katz, G.: Complexity of shadows and traversing flows in terms of the simplicial volume. J. Topol. Anal. 8(3), 501–543 (2016)
Katz G.: Causal Holography of traversing flows. J. Dyn. Differ. Equ. (2020). https://doi.org/10.1007/s10884-020-09910-y. arXiv:1409.0588v4 [mathGT]
Katz, G.: Causal holography in application to the inverse scattering problem. Inverse Probl. Imaging 13(3), 597–633 (2019). https://doi.org/10.3934/ipi.2019028. arXiv: 1703.08874v3
Katz, G.: The ball-based origami theorem and a glimpse of holography for traversing flows. Qual. Theory Dyn. Syst. 19, 41 (2020). https://doi.org/10.1007/s12346-020-00364-7
Katz, G.: Morse Theory of Gradient Flows. World Scientific, Concavity and Complexity on Manifolds with Boundary 978-981-4368-75-9 (2020)