Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry

International Press of Boston - Tập 213 Số 1 - Trang 63-106 - 2014
Simon Donaldson1, Song Sun1
1Imperial College

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson M. T.: Ricci curvature bounds and Einstein metrics on compact manifolds. J. Amer. Math. Soc., 2, 455–490 (1989)

Bando S., Kasue A.& Nakajima H.: On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Invent. Math., 97, 313–349 (1989)

Błocki Z.: Interior regularity of the complex Monge–Ampère equation in convex domains. Duke Math. J. 105, 167–181 (2000)

Cheeger, J.,Degeneration of Riemannian Metrics under Ricci Curvature Bounds. Lezioni Fermiane. Scuola Normale Superiore, Pisa, 2001.

Cheeger, J., Degeneration of Einstein metrics and metrics with special holonomy, in Surveys in Differential Geometry , Vol. 8 (Boston, MA, 2002), pp. 29–73. Int. Press, Somerville, MA, 2003.

Cheeger J.: Integral bounds on curvature elliptic estimates and rectifiability of singular sets. Geom. Funct. Anal., 13, 20–72 (2003)

Cheeger J., Colding T. H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differential Geom. 46, 406–480 (1997)

Cheeger J., Colding T. H., Tian G.: On the singularities of spaces with bounded Ricci curvature, pp. 873–914. (2002)

Chen X., Weber B.: Moduli spaces of critical Riemannian metrics with $${L^{n/2}}$$ L n / 2 norm curvature bounds. Adv. Math. 226, 1307–1330 (2011)

Colding T. H., Naber A.: Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications. Ann. of Math. 176, 1173–1229 (2012)

Croke C. B.: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. École Norm. Sup. 13, 419–435 (1980)

Dai X., Liu K., Ma X.: On the asymptotic expansion of Bergman kernel. J. Differential Geom. 72, 1–41 (2006)

Demailly J.-P., Estimations L 2 pour l’opérateur $${\bar\partial}$$ ∂ ¯ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète. Ann. Sci. École Norm. Sup., 15 (1982), 457–511.

Ding W. Y., Tian G.: Kähler–Einstein metrics and the generalized Futaki invariant. Invent. Math. 110, 315–335 (1992)

Donaldson, S. K., Stability, birational transformations and the Kähler–Einstein problem, in Surveys in Differential Geometry, Vol. 17 (Bethlehem, PA, 2010), pp. 203–228. Int. Press, Boston, MA, 2012.

Donaldson S. K.: b-stability and blow-ups. Proc. Edinb. Math. Soc. 57, 125–137 (2014)

Eyssidieux P., Guedj V., Zeriahi A.: Singular Kähler–Einstein metrics. J. Amer. Math. Soc. 22, 607–639 (2009)

Görtz, U. & Wedhorn, T.,Algebraic Geometry I. Advanced Lectures in Mathematics. Vieweg+Teubner, Wiesbaden, 2010.

Griffiths, P. & Harris, J., Principles of Algebraic Geometry. Wiley-Interscience, New York, 1978.

Hartshorne, R., Algebraic Geometry. Graduate Texts in Mathematics, 52. Springer, New York–Heidelberg, 1977.

Li, C., Kähler–Einstein Metrics and K-Stability. Ph.D. Thesis, Princeton University, Princeton, NJ. ProQuest LLC, Ann Arbor, MI, 2012.

Ma, X. & Marinescu, G., Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics, 254. Birkhäuser, Basel, 2007.

Narasimhan, R., Introduction to the Theory of Analytic Spaces. Lecture Notes in Mathematics, 25. Springer, Berlin–Heidelberg, 1966.

Nijenhuis A., Woolf W. B.: Some integration problems in almost-complex and complex manifolds. Ann. of Math. 77, 424–489 (1963)

Ross J., Thomas R.: Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics. J. Differential Geom. 88, 109–159 (2011)

Shiffman B.: On the removal of singularities of analytic sets. Michigan Math. J. 15, 111–120 (1968)

Sibner L. M.: The isolated point singularity problem for the coupled Yang–Mills equations in higher dimensions. Math. Ann. 271, 125–131 (1985)

Székelyhidi, G., Filtrations and test-configurations. Preprint, 2011. arXiv:1111.4986 [math.AG].

Tian G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101, 101–172 (1990)

Tian, G., Kähler–Einstein metrics on algebraic manifolds, in Proceedings of the International Congress of Mathematicians (Kyoto, 1990), Vol. I, pp. 587–598. Math. Soc. Japan, Tokyo, 1991.

Tian, G., Existence of Einstein metrics on Fano manifolds, in Metric and Differential Geometry, Progress in Mathematics, 297, pp. 119–159. Springer, New York, 2012.

Wehrheim, K., Uhlenbeck Compactness. EMS Series of Lectures in Mathematics. Eur. Math. Soc., Zürich, 2004.