GroEL stimulates protein folding through forced unfolding

Nature Structural and Molecular Biology - Tập 15 Số 3 - Trang 303-311 - 2008
Zong Lin1, Damian Madan1, Hays S. Rye1
1Department of Molecular Biology, Princeton University, Schultz Laboratory, Princeton, 08544, New Jersey, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chapman, E. et al. Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL. Proc. Natl. Acad. Sci. USA 103, 15800–15805 (2006).

Kerner, M.J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122, 209–220 (2005).

Houry, W.A., Frishman, D., Eckerskorn, C., Lottspeich, F. & Hartl, F.U. Identification of in vivo substrates of the chaperonin GroEL. Nature 402, 147–154 (1999).

Dobson, C.M. The structural basis of protein folding and its links with human disease. Phil. Trans. R. Soc. Lond. B 356, 133–145 (2001).

Grantcharova, V., Alm, E.J., Baker, D. & Horwich, A.L. Mechanisms of protein folding. Curr. Opin. Struct. Biol. 11, 70–82 (2001).

Chiti, F. & Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

Horwich, A. Protein aggregation in disease: a role for folding intermediates forming specific multimeric interactions. J. Clin. Invest. 110, 1221–1232 (2002).

Lansbury, P.T. & Lashuel, H.A. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443, 774–779 (2006).

Caughey, B. & Baron, G.S. Prions and their partners in crime. Nature 443, 803–810 (2006).

Ellis, R.J. & van der Vies, S.M. Molecular chaperones. Annu. Rev. Biochem. 60, 321–347 (1991).

Young, J.C., Agashe, V.R., Siegers, K. & Hartl, F.U. Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol. 5, 781–791 (2004).

Bukau, B., Weissman, J. & Horwich, A. Molecular chaperones and protein quality control. Cell 125, 443–451 (2006).

Horwich, A.L., Fenton, W.A., Chapman, E. & Farr, G.W. Two families of chaperonin: physiology and mechanism. Annu. Rev. Cell Dev. Biol. 23, 115–145 (2007).

Lin, Z. & Rye, H.S. GroEL-mediated protein folding: making the impossible, possible. Crit. Rev. Biochem. Mol. Biol. 41, 211–239 (2006).

Thirumalai, D. & Lorimer, G.H. Chaperonin-mediated protein folding. Annu. Rev. Biophys. Biomol. Struct. 30, 245–269 (2001).

Slepenkov, S.V. & Witt, S.N. The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase? Mol. Microbiol. 45, 1197–1206 (2002).

Rye, H.S. et al. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388, 792–798 (1997).

Xu, Z., Horwich, A.L. & Sigler, P.B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741–750 (1997).

Mayhew, M. et al. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379, 420–426 (1996).

Weissman, J.S., Rye, H.S., Fenton, W.A., Beechem, J.M. & Horwich, A.L. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84, 481–490 (1996).

Weissman, J.S. et al. Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83, 577–587 (1995).

Braig, K. et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371, 578–586 (1994).

Fenton, W.A., Kashi, Y., Furtak, K. & Horwich, A.L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371, 614–619 (1994).

Boisvert, D.C., Wang, J., Otwinowski, Z., Horwich, A.L. & Sigler, P.B. The 2.4 crystal structure of the bacterial chaperonin GroEL complexed with ATP γS. Nat. Struct. Biol. 3, 170–177 (1996).

Burston, S.G., Ranson, N.A. & Clarke, A.R. The origins and consequences of asymmetry in the chaperonin reaction cycle. J. Mol. Biol. 249, 138–152 (1995).

Todd, M.J., Viitanen, P.V. & Lorimer, G.H. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265, 659–666 (1994).

Rye, H.S. et al. GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97, 325–338 (1999).

Ranson, N.A., Dunster, N.J., Burston, S.G. & Clarke, A.R. Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds. J. Mol. Biol. 250, 581–586 (1995).

Goloubinoff, P., Christeller, J.T., Gatenby, A.A. & Lorimer, G.H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342, 884–889 (1989).

Weissman, J.S., Kashi, Y., Fenton, W.A. & Horwich, A.L. GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78, 693–702 (1994).

Motojima, F., Chaudhry, C., Fenton, W.A., Farr, G.W. & Horwich, A.L. Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL. Proc. Natl. Acad. Sci. USA 101, 15005–15012 (2004).

Ellis, R.J. Molecular chaperones. Opening and closing the Anfinsen cage. Curr. Biol. 4, 633–635 (1994).

Agard, D.A. To fold or not to fold. Science 260, 1903–1904 (1993).

Park, E.S., Fenton, W.A. & Horwich, A.L. Disulfide formation as a probe of folding in GroEL-GroES reveals correct formation of long-range bonds and editing of incorrect short-range ones. Proc. Natl. Acad. Sci. USA 104, 2145–2150 (2007).

Lin, Z. & Rye, H.S. Expansion and compression of a protein folding intermediate by GroEL. Mol. Cell 16, 23–34 (2004).

Brinker, A. et al. Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107, 223–233 (2001).

Jewett, A.I., Baumketner, A. & Shea, J.E. Accelerated folding in the weak hydrophobic environment of a chaperonin cavity: creation of an alternate fast folding pathway. Proc. Natl. Acad. Sci. USA 101, 13192–13197 (2004).

Thirumalai, D., Klimov, D.K. & Lorimer, G.H. Caging helps proteins fold. Proc. Natl. Acad. Sci. USA 100, 11195–11197 (2003).

Betancourt, M.R. & Thirumalai, D. Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity. J. Mol. Biol. 287, 627–644 (1999).

Takagi, F., Koga, N. & Takada, S. How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations. Proc. Natl. Acad. Sci. USA 100, 11367–11372 (2003).

Todd, M.J., Lorimer, G.H. & Thirumalai, D. Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism. Proc. Natl. Acad. Sci. USA 93, 4030–4035 (1996).

Stan, G., Lorimer, G.H., Thirumalai, D. & Brooks, B.R. Coupling between allosteric transitions in GroEL and assisted folding of a substrate protein. Proc. Natl. Acad. Sci. USA 104, 8803–8808 (2007).

Lorimer, G. Protein folding. Folding with a two-stroke motor. Nature 388, 720–721, 723 (1997).

Shtilerman, M., Lorimer, G.H. & Englander, S.W. Chaperonin function: folding by forced unfolding. Science 284, 822–825 (1999).

Park, E.S., Fenton, W.A. & Horwich, A.L. No evidence for a forced-unfolding mechanism during ATP/GroES binding to substrate-bound GroEL: no observable protection of metastable Rubisco intermediate or GroEL-bound Rubisco from tritium exchange. FEBS Lett. 579, 1183–1186 (2005).

Chen, J., Walter, S., Horwich, A.L. & Smith, D.L. Folding of malate dehydrogenase inside the GroEL-GroES cavity. Nat. Struct. Biol. 8, 721–728 (2001).

Fenton, W.A. & Horwich, A.L. Chaperonin-mediated protein folding: fate of substrate polypeptide. Q. Rev. Biophys. 36, 229–256 (2003).

Sparrer, H. & Buchner, J. How GroES regulates binding of nonnative protein to GroEL. J. Biol. Chem. 272, 14080–14086 (1997).

Farr, G.W. et al. Multivalent binding of nonnative substrate proteins by the chaperonin GroEL. Cell 100, 561–573 (2000).

Sharp, J.S., Forrest, J.A. & Jones, R.A. Surface denaturation and amyloid fibril formation of insulin at model lipid-water interfaces. Biochemistry 41, 15810–15819 (2002).

Swain, J.F. & Gierasch, L.M. First glimpses of a chaperonin-bound folding intermediate. Proc. Natl. Acad. Sci. USA 102, 13715–13716 (2005).

Elad, N. et al. Topologies of a substrate protein bound to the chaperonin GroEL. Mol. Cell 26, 415–426 (2007).

Chaudhuri, T.K., Farr, G.W., Fenton, W.A., Rospert, S. & Horwich, A.L. GroEL/GroES-mediated folding of a protein too large to be encapsulated. Cell 107, 235–246 (2001).

Paul, S., Singh, C., Mishra, S. & Chaudhuri, T.K. The 69 kDa Escherichia coli maltodextrin glucosidase does not get encapsulated underneath GroES and folds through trans mechanism during GroEL/GroES-assisted folding. FASEB J. 21, 2874–2885 (2007).

Farr, G.W. et al. Folding with and without encapsulation by cis- and trans-only GroEL-GroES complexes. EMBO J. 22, 3220–3230 (2003).

Poso, D., Clarke, A.R. & Burston, S.G. A kinetic analysis of the nucleotide-induced allosteric transitions in a single-ring mutant of GroEL. J. Mol. Biol. 338, 969–977 (2004).

Rye, H.S. Application of fluorescence resonance energy transfer to the GroEL-GroES chaperonin reaction. Methods 24, 278–288 (2001).

James, D.R., Siemiarczuk, A. & Ware, W.R. Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes. Rev. Sci. Instrum. 63, 1710–1716 (1992).

Lakowicz, J.R. Energy transfer. In Principles of Fluorescence Spectroscopy 368–391 (Kluwer Academic; Plenum Publishers, New York, 1999).

Hermanson, G.T. Bioconjugate Techniques (Academic Press, San Diego, 1996).