Grenzen einer jeden Gesellschaft
Tóm tắt
Từ khóa
Tài liệu tham khảo
Afanasyev, V.I., Geiger, J., Kersting, G., Vatutin, V.A.: Criticality in branching processes in random environment. Ann. Probab. 33(2), 645–673 (2005)
Alsmeyer, G., Rösler, U.: The bisexual Galton-Watson process with promiscuous mating: extinction probabilities in the supercritical case. Ann. Appl. Probab. (1996)
Asmussen, S., Kurtz, T.G.: Necessary and sufficient conditions for complete convergence in the law of large numbers. Ann. Probab. 8(1), 176–182 (1980)
Barbour, A.D.: Second order limit theorems for the Markov branching process in random environments. Stoch. Process. Appl. 4(1), 33–40 (1976)
Bertacchi, D., Zucca, F.: Strong local survival of branching random walks is not monotone. Adv. Appl. Probab. 46(2), 400–421 (2014)
Biggins, J.D., Rahimzadeh, S.: Convergence results on multitype, multivariate branching random walks. Adv. Appl. Probab. 37, 681–705 (2005)
Bruss, F.T.: A note on extinction criteria for bisexual Galton-Watson processes. J. Appl. Probab. 21, 915–919 (1984)
Bruss, F.T., Robertson, J.B.: ‘Wald’s lemma’ for sums of order statistics of i.i.d. random variables. Adv. Appl. Probab. 23, 612–623 (1991)
Bruss, F.T., Duerinckx, M.: Resource dependent branching processes and the envelope of societies. Ann. Appl. Probab. (2014, to appear). http://www.imstat.org/aap/future_papers.html
Gantert, N., Müller, S., Popov, S., Vachkovskaja, M.: Survival of branching random walks in random environment. J. Theor. Probab. 23, 1002–1014 (2010)
Haccou, P., Jagers, P., Vatutin, V.A.: Branching Processes – Variation, Growth and Extinction of Populations. Cambridge University Press, Cambridge (2005)
Hsu, P.L., Robbins, H.: Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA 33(2), 25–31 (1947)
Molina, M.: Two-sex branching process literature. In: Gonzales, M., del Puerto, I.M., Martinez, R., Molina, M., Mota, M., Ramos, A. (Hrsg.) Lecture Notes in Statistics, Bd. 196, S. 279–291. Springer, Berlin (2000)