Greigite: a true intermediate on the polysulfide pathway to pyrite

Stefan Hunger1, Liane G. Benning1
1Earth and Biosphere Institute, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK

Tóm tắt

AbstractThe formation of pyrite (FeS2) from iron monosulfide precursors in anoxic sediments has been suggested to proceed via mackinawite (FeS) and greigite (Fe3S4). Despite decades of research, the mechanisms of pyrite formation are not sufficiently understood because solid and dissolved intermediates are oxygen-sensitive and poorly crystalline and therefore notoriously difficult to characterize and quantify.In this study, hydrothermal synchrotron-based energy dispersive X-ray diffraction (ED-XRD) methods were used to investigate in situ and in real-time the transformation of mackinawite to greigite and pyrite via the polysulfide pathway. The rate of formation and disappearance of specific Bragg peaks during the reaction and the changes in morphology of the solid phases as observed with high resolution microscopy were used to derive kinetic parameters and to determine the mechanisms of the reaction from mackinawite to greigite and pyrite.The results clearly show that greigite is formed as an intermediate on the pathway from mackinawite to pyrite. The kinetics of the transformation of mackinawite to greigite and pyrite follow a zero-order rate law indicating a solid-state mechanism. The morphology of greigite and pyrite crystals formed under hydrothermal conditions supports this conclusion and furthermore implies growth of greigite and pyrite by oriented aggregation of nanoparticulate mackinawite and greigite, respectively. The activation enthalpies and entropies of the transformation of mackinawite to greigite, and of greigite to pyrite were determined from the temperature dependence of the rate constants according to the Eyring equation. Although the activation enthalpies are uncharacteristic of a solid-state mechanism, the activation entropies indicate a large increase of order in the transition state, commensurate with a solid-state mechanism.

Từ khóa


Tài liệu tham khảo

Berner RA: Sedimentary pyrite formation. American Journal of Science. 1970, 268: 1-23.

Berner RA: Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta. 1984, 48 (4): 605-615. 10.1016/0016-7037(84)90089-9.

Berner RA: Distribution and diagenesis of sulfur in some sediments from the Gulf of California. Marine Geology. 1964, 1 (2): 117-140. 10.1016/0025-3227(64)90011-8.

Boursiquot S, Mullet M, Ehrhardt JJ: XPS study of the reaction of chromium (VI) with mackinawite. Surface and Interface Analysis. 2002, 34: 293-297. 10.1002/sia.1303.

Mullet M, Boursiquot S, Ehrhardt JJ: Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS. Colloid Surf A-Physicochem Eng Asp. 2004, 244 (1-3): 77-85. 10.1016/j.colsurfa.2004.06.013.

Livens FR, Jones MJ, Hynes AJ, Charnock JM, Mosselmans JFW, Hennig C, Steele H, Collison D, Vaughan DJ, Pattrick RAD, Reed WA, Moyes LN: X-ray absorption spectroscopy studies of reactions of technetium, uranium and neptunium with mackinawite. J Environ Radioact. 2004, 74 (1-3): 211-219. 10.1016/j.jenvrad.2004.01.012.

Luther GW: Pyrite synthesis via polysulfide compounds. Geochimica et Cosmochimica Acta. 1991, 55: 2839-2849. 10.1016/0016-7037(91)90449-F.

Schoonen MAA, Barnes HL: Reactions forming pyrite and marcasite from solution: II. FeS precursors below 100ºC. Geochimica et Cosmochimica Acta. 1991, 55: 1505-1514. 10.1016/0016-7037(91)90123-M.

Schoonen MAA, Barnes HL: Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS below 100ºC. Geochimica et Cosmochimica Acta. 1991, 55: 1495-1504. 10.1016/0016-7037(91)90122-L.

Rickard D, Luther GW: Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125ºC: The mechanism. Geochimica et Cosmochimica Acta. 1997, 61: 135-147. 10.1016/S0016-7037(96)00322-5.

Drobner E, Huber C, Wächtershäuser G, Rose D, Stetter KO: Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature. 1990, 346: 742-744. 10.1038/346742a0.

Rickard D: Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125ºC: The rate equation. Geochimica et Cosmochimica Acta. 1997, 61: 115-134. 10.1016/S0016-7037(96)00321-3.

Rickard D, Morse JW: Acid volatile sulfide (AVS). Marine Chemistry. 2005, 97 (3-4): 141-197. 10.1016/j.marchem.2005.08.004.

Berner RA: Iron sulfides formed from aqueous solution at low temperatures and atmospheric pressure. Journal of Geology. 1964, 72 (3): 293-306.

Berner RA: Stability fields of iron minerals in anaerobic marine sediments. Journal of Geology. 1964, 72 (6): 826-824.

Skinner BJ, Erd RC, Grimaldi FS: Greigite, the thio-spinel of iron; A new mineral. American Mineralogist. 1964, 49: 543-555.

Wilkin RT, Barnes HL: Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta. 1996, 60: 4167-4179. 10.1016/S0016-7037(97)81466-4.

Benning LG, Wilkin RT, Barnes HL: Reaction pathways in the Fe-S system below 100ºC. Chemical Geology. 2000, 167: 25-51. 10.1016/S0009-2541(99)00198-9.

Kao SJ, Horng CS, Roberts AP, Liu KK: Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: Influence of geochemical environment on greigite and pyrrhotite formation. Chemical Geology. 2004, 203: 153-168. 10.1016/j.chemgeo.2003.09.007.

Roberts AP, Turner GM: Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth and Planetary Science Letters. 1993, 115: 257-273. 10.1016/0012-821X(93)90226-Y.

Rowan CJ, Roberts AP: Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth and Planetary Science Letters. 2006, 241: 119-137. 10.1016/j.epsl.2005.10.017.

Mann S, Sparks NHC, Frankel RB, Bazylinski DA, Jannasch HW: Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature. 1990, 343: 258-261. 10.1038/343258a0.

Pósfai M, Buseck PR, Bazylinski DA, Frankel RB: Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science. 1998, 280: 880-883. 10.1126/science.280.5365.880.

Pósfai M, Buseck PR, Bazylinski DA, Frankel RB: Iron sulfides from magnetotactic bacteria: Structure, composition, and phase transitions. American Mineralogist. 1998, 83: 1469-1481.

Kasama T, Posfai M, Chong RKK, Finlayson AP, Buseck PR, Frankel RB, Dunin-Borkowski RE: Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. American Mineralogist. 2006, 91 (8-9): 1216-1229. 10.2138/am.2006.2227.

Steudel R, Holdt G, Gobel T: Ion-pair chromatographic separation of inorganic sulphur anions including polysulphide. Journal of Chromatography A. 1989, 475 (2): 442-446. 10.1016/S0021-9673(01)89701-6.

Petre CF, Larachi F: Capillary electrophoretic separation of inorganic sulfur-sulfide, polysulfides, and sulfur-oxygen species. Journal of Separation Science. 2006, 29: 144-152. 10.1002/jssc.200500265.

Shaw S, Pepper SE, Bryan ND, Livens FR: The kinetics and mechanisms of goethite and hematite crystallization under alkaline conditions, and in the presence of phosphate. American Mineralogist. 2005, 90: 1852-1860. 10.2138/am.2005.1757.

Shaw S, Clark SM, Henderson CMB: Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2*4H2O) and xonolite (Ca6Si6O17(OH)2): an in situ synchrotron study. Chemical Geology. 2000, 167: 129-140. 10.1016/S0009-2541(99)00205-3.

Clark SM: A new energy-dispersive powder diffraction facility at the SRS. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1996, 381 (1): 161-168. 10.1016/0168-9002(96)00679-1.

Yee N, Shaw S, Benning LG, Nguyen TH: The rate of ferrihydrite transformation to goethite via the Fe(II) pathway. American Mineralogist. 2006, 91: 92-96. 10.2138/am.2006.1860.

Cheary RW, Coelho A: A fundamental parameters approach to x-ray line-profile fitting. Journal of Applied Crystallography. 1992, 25: 109-121. 10.1107/S0021889891010804.

Kirkpatrick RJ: Kinetics of geochemical processes. 1981, Washington, D.C. , Mineralogical Society of America, 8: 321-398. Kinetics of crystallization of igneous rocks, Lasaga AC, Kirkpatrick RJ, Reviews in Mineralogy, Ribbe PH.

Lasaga AC: Kinetic Theory in the Earth Sciences. 1998, Princeton, N.J. , Princeton University Press, 811-

Lasaga AC: Kinetics of geochemical processes. 1981, Washington, D.C. , Mineralogical Society of America, 8: 1-68. Rate laws of chemical reactions, Lasaga AC, Kirkpatrick RJ, Reviews in Mineralogy, Ribbe PH,

Avrami M: Kinetics of phase change, II. Journal of Chemical Physics. 1939, 8: 212-224. 10.1063/1.1750631.

Avrami M: Kinetics of phase change, I. Journal of Chemical Physics. 1939, 7: 1103-1112. 10.1063/1.1750380.

Johnson PF, Mehl RF: Reaction kinetics in processes of nucleation and growth. American Institute of Mining Engineering, Technical Publication. 1939, 1089: 1-27.

Hulbert SF: Models of solid-state reactions in powder compacts: A review. Journal of the British Ceramics Society. 1969, 6: 11-20.

Schwertmann U, Stanjek H, Becher HH: Long term in vitro transformation of 2-line ferrihydrite to goethite/hematite at 4, 10 15 and 25°C. Clay Minerals. 2004, 39: 433-438. 10.1180/0009855043940145.

Schwertmann U, Murad E: Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays and Clay Minerals. 1983, 31 (4): 277-284. 10.1346/CCMN.1983.0310405.

Lennie AR, Redfern SAT, Champness PE, Stoddart CP, Schofield PF, Vaughan DJ: Transformation of mackinawite to greigite: An in-situ X-ray powder diffraction and transmission electron microprobe study. American Mineralogist. 1997, 82: 302-309.

Vaughan DJ, Tossell JA: Electronic structure of thiospinel minerals - results from MO calculations. American Mineralogist. 1981, 66: 1250-1253.

Vaughan DJ, Ridout MS: Mössbauer studies of some sulphide minerals. Journal of Inorganic and Nuclear Chemistry. 1971, 33: 741-746. 10.1016/0022-1902(71)80472-4.

Butler EC, Hayes KF: Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide. Environmental Science and Technology. 1998, 32: 1276-1284. 10.1021/es9706864.

Butler EC, Hayes KF: Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide. Environmental Science and Technology. 1999, 33: 2021-2027. 10.1021/es9809455.

Jeong HY, Hayes KF: Impact of transition metals on reductive dechlorination rate of hexachloroethane by mackinawite. Environmental Science and Technology. 2003, 37: 4650-4655. 10.1021/es0340533.

Butler EC, Hayes KF: Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide. Environ Sci Technol. 2000, 34 (3): 422-429. 10.1021/es980946x.

Patterson RR, Fendorf SE, Fendorf M: Reduction of hexavalent chromium by amorphous iron sulfide. Environmental Science and Technology. 1997, 31: 2039-2044. 10.1021/es960836v.

Luther III GW: The frontier molecular orbital theory approach on geochemical processes. Aquatic Chemical Kinetics. Edited by: Stumm W. 1990, New York , J. Wiley & Sons, 173-198.

Gilbert B, Zhang H, Huang F, Finnegan MP, Waychunas GA, Banfield JF: Special phase transformation and crystal growth pathways observed in nanoparticles. Geochemical Transactions. 2003, 4 (4): 20-27. 10.1039/b309073f.

Penn RL, Banfield JF: Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science. 1998, 281 (5379): 969-971. 10.1126/science.281.5379.969.

Penn RL, Banfield JF: Oriented attachment and growth, twinning, polytypism, and formation of metastable phases; insights from nanocrystalline TiO2. American Mineralogist. 1998, 83 (9-10): 1077-1082.

Penn RL: Kinetics of oriented aggregation. J Phys Chem B. 2004, 108 (34): 12707-12712. 10.1021/jp036490+.

Penn RL, Oskam G, Strathmann TJ, P.C. S, Stone AT, Veblen DR: Epitaxial assembly in aged colloids. Journal of Physical Chemistry B. 2001, 105: 2177-2182. 10.1021/jp003570u.

Huang F, Zhang H, Banfield JF: Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Letters. 2003, 3 (3): 373-378. 10.1021/nl025836+.

Drews TO, Katsoulakis MA, Tsapatsis M: A mathematical model for crystal growth by aggregation of precursor metastable nanoparticles. J Phys Chem B. 2005, 109 (50): 23879-23887. 10.1021/jp0537299.

Penn RL, Banfield JF: Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochimica et Cosmochimica Acta. 1999, 63 (10): 1549-1557. 10.1016/S0016-7037(99)00037-X.

Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL: Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science. 2000, 289: 751-754. 10.1126/science.289.5480.751.

Holleman AF, Wiberg E: Lehrbuch der Anorganischen Chemie. 1985, Berlin, New York , Walter de Gruyter, 1451-100

Wilkin RT, Barnes HL: Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta. 1997, 61 (2): 323-339. 10.1016/S0016-7037(96)00320-1.

Hunger S, Newton RJ, Bottrell S, Benning LG: The formation and preservation of greigite. Geochimica et Cosmochimica Acta Supplement. 2006, 70 (18): A73-

Hunger S, Benning LG, Tarasov KA: Greigite - now you see it, now you don't: An in-situ ED-XRD study. Geochimica et Cosmochimica Acta Supplement. 2005, 69 (10): A42-