Greigite: a true intermediate on the polysulfide pathway to pyrite
Tóm tắt
Từ khóa
Tài liệu tham khảo
Berner RA: Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta. 1984, 48 (4): 605-615. 10.1016/0016-7037(84)90089-9.
Berner RA: Distribution and diagenesis of sulfur in some sediments from the Gulf of California. Marine Geology. 1964, 1 (2): 117-140. 10.1016/0025-3227(64)90011-8.
Boursiquot S, Mullet M, Ehrhardt JJ: XPS study of the reaction of chromium (VI) with mackinawite. Surface and Interface Analysis. 2002, 34: 293-297. 10.1002/sia.1303.
Mullet M, Boursiquot S, Ehrhardt JJ: Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS. Colloid Surf A-Physicochem Eng Asp. 2004, 244 (1-3): 77-85. 10.1016/j.colsurfa.2004.06.013.
Livens FR, Jones MJ, Hynes AJ, Charnock JM, Mosselmans JFW, Hennig C, Steele H, Collison D, Vaughan DJ, Pattrick RAD, Reed WA, Moyes LN: X-ray absorption spectroscopy studies of reactions of technetium, uranium and neptunium with mackinawite. J Environ Radioact. 2004, 74 (1-3): 211-219. 10.1016/j.jenvrad.2004.01.012.
Luther GW: Pyrite synthesis via polysulfide compounds. Geochimica et Cosmochimica Acta. 1991, 55: 2839-2849. 10.1016/0016-7037(91)90449-F.
Schoonen MAA, Barnes HL: Reactions forming pyrite and marcasite from solution: II. FeS precursors below 100ºC. Geochimica et Cosmochimica Acta. 1991, 55: 1505-1514. 10.1016/0016-7037(91)90123-M.
Schoonen MAA, Barnes HL: Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS below 100ºC. Geochimica et Cosmochimica Acta. 1991, 55: 1495-1504. 10.1016/0016-7037(91)90122-L.
Rickard D, Luther GW: Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125ºC: The mechanism. Geochimica et Cosmochimica Acta. 1997, 61: 135-147. 10.1016/S0016-7037(96)00322-5.
Drobner E, Huber C, Wächtershäuser G, Rose D, Stetter KO: Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature. 1990, 346: 742-744. 10.1038/346742a0.
Rickard D: Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125ºC: The rate equation. Geochimica et Cosmochimica Acta. 1997, 61: 115-134. 10.1016/S0016-7037(96)00321-3.
Rickard D, Morse JW: Acid volatile sulfide (AVS). Marine Chemistry. 2005, 97 (3-4): 141-197. 10.1016/j.marchem.2005.08.004.
Berner RA: Iron sulfides formed from aqueous solution at low temperatures and atmospheric pressure. Journal of Geology. 1964, 72 (3): 293-306.
Berner RA: Stability fields of iron minerals in anaerobic marine sediments. Journal of Geology. 1964, 72 (6): 826-824.
Skinner BJ, Erd RC, Grimaldi FS: Greigite, the thio-spinel of iron; A new mineral. American Mineralogist. 1964, 49: 543-555.
Wilkin RT, Barnes HL: Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta. 1996, 60: 4167-4179. 10.1016/S0016-7037(97)81466-4.
Benning LG, Wilkin RT, Barnes HL: Reaction pathways in the Fe-S system below 100ºC. Chemical Geology. 2000, 167: 25-51. 10.1016/S0009-2541(99)00198-9.
Kao SJ, Horng CS, Roberts AP, Liu KK: Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: Influence of geochemical environment on greigite and pyrrhotite formation. Chemical Geology. 2004, 203: 153-168. 10.1016/j.chemgeo.2003.09.007.
Roberts AP, Turner GM: Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth and Planetary Science Letters. 1993, 115: 257-273. 10.1016/0012-821X(93)90226-Y.
Rowan CJ, Roberts AP: Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth and Planetary Science Letters. 2006, 241: 119-137. 10.1016/j.epsl.2005.10.017.
Mann S, Sparks NHC, Frankel RB, Bazylinski DA, Jannasch HW: Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature. 1990, 343: 258-261. 10.1038/343258a0.
Pósfai M, Buseck PR, Bazylinski DA, Frankel RB: Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science. 1998, 280: 880-883. 10.1126/science.280.5365.880.
Pósfai M, Buseck PR, Bazylinski DA, Frankel RB: Iron sulfides from magnetotactic bacteria: Structure, composition, and phase transitions. American Mineralogist. 1998, 83: 1469-1481.
Kasama T, Posfai M, Chong RKK, Finlayson AP, Buseck PR, Frankel RB, Dunin-Borkowski RE: Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. American Mineralogist. 2006, 91 (8-9): 1216-1229. 10.2138/am.2006.2227.
Steudel R, Holdt G, Gobel T: Ion-pair chromatographic separation of inorganic sulphur anions including polysulphide. Journal of Chromatography A. 1989, 475 (2): 442-446. 10.1016/S0021-9673(01)89701-6.
Petre CF, Larachi F: Capillary electrophoretic separation of inorganic sulfur-sulfide, polysulfides, and sulfur-oxygen species. Journal of Separation Science. 2006, 29: 144-152. 10.1002/jssc.200500265.
Shaw S, Pepper SE, Bryan ND, Livens FR: The kinetics and mechanisms of goethite and hematite crystallization under alkaline conditions, and in the presence of phosphate. American Mineralogist. 2005, 90: 1852-1860. 10.2138/am.2005.1757.
Shaw S, Clark SM, Henderson CMB: Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2*4H2O) and xonolite (Ca6Si6O17(OH)2): an in situ synchrotron study. Chemical Geology. 2000, 167: 129-140. 10.1016/S0009-2541(99)00205-3.
Clark SM: A new energy-dispersive powder diffraction facility at the SRS. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1996, 381 (1): 161-168. 10.1016/0168-9002(96)00679-1.
Yee N, Shaw S, Benning LG, Nguyen TH: The rate of ferrihydrite transformation to goethite via the Fe(II) pathway. American Mineralogist. 2006, 91: 92-96. 10.2138/am.2006.1860.
Cheary RW, Coelho A: A fundamental parameters approach to x-ray line-profile fitting. Journal of Applied Crystallography. 1992, 25: 109-121. 10.1107/S0021889891010804.
Kirkpatrick RJ: Kinetics of geochemical processes. 1981, Washington, D.C. , Mineralogical Society of America, 8: 321-398. Kinetics of crystallization of igneous rocks, Lasaga AC, Kirkpatrick RJ, Reviews in Mineralogy, Ribbe PH.
Lasaga AC: Kinetic Theory in the Earth Sciences. 1998, Princeton, N.J. , Princeton University Press, 811-
Lasaga AC: Kinetics of geochemical processes. 1981, Washington, D.C. , Mineralogical Society of America, 8: 1-68. Rate laws of chemical reactions, Lasaga AC, Kirkpatrick RJ, Reviews in Mineralogy, Ribbe PH,
Avrami M: Kinetics of phase change, II. Journal of Chemical Physics. 1939, 8: 212-224. 10.1063/1.1750631.
Avrami M: Kinetics of phase change, I. Journal of Chemical Physics. 1939, 7: 1103-1112. 10.1063/1.1750380.
Johnson PF, Mehl RF: Reaction kinetics in processes of nucleation and growth. American Institute of Mining Engineering, Technical Publication. 1939, 1089: 1-27.
Hulbert SF: Models of solid-state reactions in powder compacts: A review. Journal of the British Ceramics Society. 1969, 6: 11-20.
Schwertmann U, Stanjek H, Becher HH: Long term in vitro transformation of 2-line ferrihydrite to goethite/hematite at 4, 10 15 and 25°C. Clay Minerals. 2004, 39: 433-438. 10.1180/0009855043940145.
Schwertmann U, Murad E: Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays and Clay Minerals. 1983, 31 (4): 277-284. 10.1346/CCMN.1983.0310405.
Lennie AR, Redfern SAT, Champness PE, Stoddart CP, Schofield PF, Vaughan DJ: Transformation of mackinawite to greigite: An in-situ X-ray powder diffraction and transmission electron microprobe study. American Mineralogist. 1997, 82: 302-309.
Vaughan DJ, Tossell JA: Electronic structure of thiospinel minerals - results from MO calculations. American Mineralogist. 1981, 66: 1250-1253.
Vaughan DJ, Ridout MS: Mössbauer studies of some sulphide minerals. Journal of Inorganic and Nuclear Chemistry. 1971, 33: 741-746. 10.1016/0022-1902(71)80472-4.
Butler EC, Hayes KF: Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide. Environmental Science and Technology. 1998, 32: 1276-1284. 10.1021/es9706864.
Butler EC, Hayes KF: Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide. Environmental Science and Technology. 1999, 33: 2021-2027. 10.1021/es9809455.
Jeong HY, Hayes KF: Impact of transition metals on reductive dechlorination rate of hexachloroethane by mackinawite. Environmental Science and Technology. 2003, 37: 4650-4655. 10.1021/es0340533.
Butler EC, Hayes KF: Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide. Environ Sci Technol. 2000, 34 (3): 422-429. 10.1021/es980946x.
Patterson RR, Fendorf SE, Fendorf M: Reduction of hexavalent chromium by amorphous iron sulfide. Environmental Science and Technology. 1997, 31: 2039-2044. 10.1021/es960836v.
Luther III GW: The frontier molecular orbital theory approach on geochemical processes. Aquatic Chemical Kinetics. Edited by: Stumm W. 1990, New York , J. Wiley & Sons, 173-198.
Gilbert B, Zhang H, Huang F, Finnegan MP, Waychunas GA, Banfield JF: Special phase transformation and crystal growth pathways observed in nanoparticles. Geochemical Transactions. 2003, 4 (4): 20-27. 10.1039/b309073f.
Penn RL, Banfield JF: Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science. 1998, 281 (5379): 969-971. 10.1126/science.281.5379.969.
Penn RL, Banfield JF: Oriented attachment and growth, twinning, polytypism, and formation of metastable phases; insights from nanocrystalline TiO2. American Mineralogist. 1998, 83 (9-10): 1077-1082.
Penn RL: Kinetics of oriented aggregation. J Phys Chem B. 2004, 108 (34): 12707-12712. 10.1021/jp036490+.
Penn RL, Oskam G, Strathmann TJ, P.C. S, Stone AT, Veblen DR: Epitaxial assembly in aged colloids. Journal of Physical Chemistry B. 2001, 105: 2177-2182. 10.1021/jp003570u.
Huang F, Zhang H, Banfield JF: Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Letters. 2003, 3 (3): 373-378. 10.1021/nl025836+.
Drews TO, Katsoulakis MA, Tsapatsis M: A mathematical model for crystal growth by aggregation of precursor metastable nanoparticles. J Phys Chem B. 2005, 109 (50): 23879-23887. 10.1021/jp0537299.
Penn RL, Banfield JF: Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochimica et Cosmochimica Acta. 1999, 63 (10): 1549-1557. 10.1016/S0016-7037(99)00037-X.
Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL: Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science. 2000, 289: 751-754. 10.1126/science.289.5480.751.
Holleman AF, Wiberg E: Lehrbuch der Anorganischen Chemie. 1985, Berlin, New York , Walter de Gruyter, 1451-100
Wilkin RT, Barnes HL: Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta. 1997, 61 (2): 323-339. 10.1016/S0016-7037(96)00320-1.
Hunger S, Newton RJ, Bottrell S, Benning LG: The formation and preservation of greigite. Geochimica et Cosmochimica Acta Supplement. 2006, 70 (18): A73-
Hunger S, Benning LG, Tarasov KA: Greigite - now you see it, now you don't: An in-situ ED-XRD study. Geochimica et Cosmochimica Acta Supplement. 2005, 69 (10): A42-