Phương pháp xác định người chiến thắng xanh dựa trên hiệu suất môi trường và đồng thuận điều chỉnh tối thiểu trong việc mua sắm dịch vụ vận tải 4PL

Springer Science and Business Media LLC - Tập 30 - Trang 34518-34535 - 2022
Na Yuan1,2, Xiaohu Qian3, Min Huang1, Haiming Liang4, Andrew W. H. Ip5, Kai-Leung Yung6
1College of Information Science and Engineering, State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
2School of Economics and Management, Shenyang Institute of Technology, Shenfu Reform and Innovation Demonstration Zone, China
3Research Institute of Business Analytics & Supply Chain Management, College of Management, Shenzhen University, Shenzhen, China
4Center for Network Big Data and Decision-Making, Business School, Sichuan University, Chengdu, China
5College of Engineering, University of Saskatchewan, Saskatoon, Canada
6Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Tóm tắt

Do nhận thức về bảo vệ môi trường ngày càng gia tăng của các doanh nghiệp và người tiêu dùng, việc xác định người chiến thắng xanh (GWD) với sự xem xét hiệu suất môi trường trở nên rất quan trọng trong việc mua sắm dịch vụ vận tải 4PL. Bài báo này nghiên cứu một phương pháp GWD mới, mà xem xét các loại thuộc tính khác nhau, bao gồm cả những thuộc tính liên quan đến hiệu suất môi trường và quy trình đạt được đồng thuận (CRP). Để mô tả nhiều loại thuộc tính, các thuật ngữ ngôn ngữ, số khoảng và số chính xác được kết hợp. Để đạt được một mức đồng thuận chấp nhận được giữa các đánh giá ngôn ngữ do các chuyên gia khác nhau đưa ra, một mô hình đồng thuận điều chỉnh tối thiểu được xây dựng. Trên cơ sở đó, một CRP tương tác được đề xuất. Kết hợp quy trình xử lý thông tin không đồng nhất và CRP, một phương pháp HC-VIKOR được phát triển nhằm nâng cao hiệu quả vận hành và chất lượng dịch vụ của 4PL. Hơn nữa, một ví dụ số được thiết kế để chứng minh tính hiệu quả của phương pháp được đề xuất. Phân tích độ nhạy cho thấy cả ngưỡng đồng thuận chấp nhận và trọng số lợi ích nhóm đều có ảnh hưởng đáng kể đến kết quả xác định người chiến thắng. Phân tích so sánh cho thấy phương pháp được đề xuất vượt trội hơn so với các phương pháp hiện có. Nghiên cứu của chúng tôi không chỉ mở rộng phương pháp xác định người chiến thắng truyền thống mà còn cung cấp hỗ trợ quyết định cho 4PL trong việc cung cấp dịch vụ vận tải một cách hiệu quả.

Từ khóa

#Người chiến thắng xanh #hiệu suất môi trường #đồng thuận điều chỉnh tối thiểu #dịch vụ vận tải 4PL #phương pháp HC-VIKOR

Tài liệu tham khảo

Afrasiabi A, Tavana M, Di Caprio D (2022) An extended hybrid fuzzy multi-criteria decision model for sustainable and resilient supplier selection. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-021-17851-2 Aguezzoul A (2014) Third-party logistics selection problem: a literature review on criteria and methods. Omega 49:69–78. https://doi.org/10.1016/j.omega.2014.05.009 Aydın S, Yörükoğlu M, Kabak M (2021) Fourth party logistics firm assessment using a novel neutrosophic MCDM. J Intell Fuzzy Syst 42(1):529–539. https://doi.org/10.3233/jifs-219209 Bandeira RAM, D’Agosto MA, Ribeiro SK, Bandeira APF, Goes GV (2018) A fuzzy multi-criteria model for evaluating sustainable urban freight transportation operations. J Clean Prod 184:727–739. https://doi.org/10.1016/j.jclepro.2018.02.234 Büyüközkan G, Feyzioğlu O, Göçer F (2018) Selection of sustainable urban transportation alternatives using an integrated intuitionistic fuzzy Choquet integral approach. Transp Res Part d: Transp Environ 58:186–207. https://doi.org/10.1016/j.trd.2017.12.005 Cabrerizo FJ, Moreno JM, Pérez IJ, Herrera-Viedma E (2009) Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft Comput 14(5):451–463. https://doi.org/10.1007/s00500-009-0453-x Celik E, Erdogan M, Gumus AT (2016) An extended fuzzy TOPSIS–GRA method based on different separation measures for green logistics service provider selection. Int J Environ Sci Technol 13(5):1377–1392. https://doi.org/10.1007/s13762-016-0977-4 Chang Y-W (2013) Performance measurement of the fourth party logistics providers. iBusiness 05(02):7–10. https://doi.org/10.4236/ib.2013.52B002 Chunguang Q, Xiaojuan C, Kexi W, Pan P (2008) Research on green logistics and sustainable development. In 2008 International Conference on Information Management. Innov Manag Ind Eng 3:162–165. https://doi.org/10.1109/iciii.2008.114 Chuu S-J (2009) Group decision-making model using fuzzy multiple attributes analysis for the evaluation of advanced manufacturing technology. Fuzzy Sets Syst 160(5):586–602. https://doi.org/10.1016/j.fss.2008.07.015 Evangelista P, Santoro L, Thomas A (2018) Environmental sustainability in third-party logistics service providers: a systematic literature review from 2000–2016. Sustainability 10(5):1627. https://doi.org/10.3390/su10051627 Gattorna J (1998) Strategic supply chain alignment: best practice in supply chain management. Gower Publishing Ltd, Hampshire Gitinavard H, Ghaderi H, Pishvaee MS (2017) Green supplier evaluation in manufacturing systems: a novel interval-valued hesitant fuzzy group outranking approach. Soft Comput 22(19):6441–6460. https://doi.org/10.1007/s00500-017-2697-1 Göl H, Çatay B (2007) Third-party logistics provider selection: insights from a Turkish automotive company. Supply Chain Manag: Int J 12(6):379–384. https://doi.org/10.1108/13598540710826290 Gören HG (2018) A decision framework for sustainable supplier selection and order allocation with lost sales. J Clean Prod 183:1156–1169. https://doi.org/10.1016/j.jclepro.2018.02.211 Guo X, Wang D (2022) Analysis of the spatial relevance and influencing factors of carbon emissions in the logistics industry from China. Environ Sci Pollut Res Int 29(2):2672–2684. https://doi.org/10.1007/s11356-021-15742-0 Herrera F, Herrera-Viedma E, Verdegay JL (1995) A sequential selection process in group decision making with a linguistic assessment approach. Inf Sci 85(4):223–239 Huang M, Dong L, Kuang H, Jiang Z-Z, Lee LH, Wang X (2021) Supply chain network design considering customer psychological behavior-a 4PL perspective. Comput Ind Eng 159:107484. https://doi.org/10.1016/j.cie.2021.107484 Huang M, Qian X, Fang S-C, Wang X (2016a) Winner determination for risk aversion buyers in multi-attribute reverse auction. Omega 59:184–200. https://doi.org/10.1016/j.omega.2015.06.007 Huang M, Ren L, Lee LH, Wang X, Kuang H, Shi H (2016b) Model and algorithm for 4PLRP with uncertain delivery time. Inf Sci 330:211–225. https://doi.org/10.1016/j.ins.2015.10.030 Huang M, Tu J, Chao X, Jin D (2019) Quality risk in logistics outsourcing: a fourth party logistics perspective. Eur J Oper Res 276(3):855–879. https://doi.org/10.1016/j.ejor.2019.01.049 Huang Q, Ling J (2021) Measuring embodied carbon dioxide of the logistics industry in China: based on industry stripping method and input-output model. Environ Sci Pollut Res Int 28(38):52780–52797. https://doi.org/10.1007/s11356-021-16190-6 IEA (2017) The future of trucks: implications for energy and the environment, 2017th ed. IEA: Paris, France: 1–167 IEA (2018) CO2 Emissions from Fuel Combustion Highlights, 2018th ed. IEA: Paris, France: 1–336. Jharkharia S, Shankar R (2007) Selection of logistics service provider: an analytic network process (ANP) approach. Omega 35(3):274–289. https://doi.org/10.1016/j.omega.2005.06.005 Jiang T, Yu Y, Yang B (2022) Understanding the carbon emissions status and emissions reduction effect of China’s transportation industry: dual perspectives of the early and late stages of the economic “new normal.” Environ Sci Pollut Res Int 29(19):28661–28674. https://doi.org/10.1007/s11356-021-18449-4 Lam JSL, Dai J (2015) Environmental sustainability of logistics service provider: an ANP-QFD approach. Int J Logist Manag 26(2):313–333. https://doi.org/10.1108/ijlm-08-2013-0088 Li Y-L, Ying C-S, Chin K-S, Yang H-T, Xu J (2018) Third-party reverse logistics provider selection approach based on hybrid-information MCDM and cumulative prospect theory. J Clean Prod 195:573–584. https://doi.org/10.1016/j.jclepro.2018.05.213 Liang R, Wang J, Huang M, Jiang Z-Z (2020) Truthful auctions for e-market logistics services procurement with quantity discounts. Trans Res B: Methodol 133:165–180. https://doi.org/10.1016/j.trb.2020.01.002 Liu P, Gao H, Ma J (2019) Novel green supplier selection method by combining quality function deployment with partitioned Bonferroni mean operator in interval type-2 fuzzy environment. Inf Sci 490:292–316. https://doi.org/10.1016/j.ins.2019.03.079 Liu Q, Zhang C, Zhu K, Rao Y (2014) Novel multi-objective resource allocation and activity scheduling for fourth party logistics. Comput Oper Res 44:42–51. https://doi.org/10.1016/j.cor.2013.10.010 Lu F, Feng W, Gao M, Bi H, Wang S, Mauriello F (2020) The fourth-party logistics routing problem using ant colony system-improved Grey Wolf Optimization. J Adv Transp 2020:1–15. https://doi.org/10.1155/2020/8831746 Lu M, Xie R, Chen P, Zou Y, Tang J (2019) Green transportation and logistics performance: an improved composite index. Sustainability 11(10):2976. https://doi.org/10.3390/su11102976 Manners-Bell J, Lyon K (2015) The future of logistics: what does the future hold for freight forwarders. Kewill: London, UK Marasco A (2008) Third-party logistics: a literature review. Int J Prod Econ 113(1):127–147. https://doi.org/10.1016/j.ijpe.2007.05.017 Mehmann J, Teuteberg F (2016) Process reengineering by using the 4PL approach. Bus Process Manag J 22(4):879–902. https://doi.org/10.1108/bpmj-12-2014-0119 Paul A, Moktadir MA, Paul SK (2019) An innovative decision-making framework for evaluating transportation service providers based on sustainable criteria. Int J Prod Res 58(24):7334–7352. https://doi.org/10.1080/00207543.2019.1652779 Qian X, Fang S-C, Yin M, Huang M, Li X (2021a) Selecting green third party logistics providers for a loss-averse fourth party logistics provider in a multiattribute reverse auction. Inf Sci 548:357–377. https://doi.org/10.1016/j.ins.2020.09.011 Qian X, Yin M, Chan FTS, Zhang J, Huang M (2021b) Sustainable–responsive winner determination for transportation service procurement auctions under accidental disruptions. J Clean Prod 320:128833. https://doi.org/10.1016/j.jclepro.2021.128833 Rekik M, Mellouli S (2012) Reputation-based winner determination problem for combinatorial transportation procurement auctions. J Oper Res Soc 63(10):1400–1409. https://doi.org/10.1057/jors.2011.108 Remli N, Amrouss A, El Hallaoui I, Rekik M (2019) A robust optimization approach for the winner determination problem with uncertainty on shipment volumes and carriers’ capacity. Trans Res B: Methodol 123:127–148. https://doi.org/10.1016/j.trb.2019.03.017 Remli N, Rekik M (2013) A robust winner determination problem for combinatorial transportation auctions under uncertain shipment volumes. Trans ResC: Emerg Technol 35:204–217. https://doi.org/10.1016/j.trc.2013.07.006 Singh RK, Benyoucef L (2012) Fuzzy Logic and Interval Arithmetic-Based TOPSIS Method for Multicriteria Reverse Auctions. Serv Sci 4(2):101–117. https://doi.org/10.1287/serv.1120.0009 Tao Y, Chew EP, Lee LH, Shi Y (2017) A column generation approach for the route planning problem in fourth party logistics. J Oper Res Soc 68(2):165–181. https://doi.org/10.1057/s41274-016-0024-3 Tavana M, Shaabani A, Santos-Arteaga FJ, Valaei N (2021) An integrated fuzzy sustainable supplier evaluation and selection framework for green supply chains in reverse logistics. Environ Sci Pollut Res Int 28(38):53953–53982. https://doi.org/10.1007/s11356-021-14302-w Yao J (2010) Decision optimization analysis on supply chain resource integration in fourth party logistics. J Manuf Syst 29(4):121–129. https://doi.org/10.1016/j.jmsy.2010.12.002 Yin M, Huang M, Wang X, Lee L H (2022) Fourth-party logistics network design under uncertainty environment. Comput Ind Eng, 167:108002. https://doi.org/10.1016/j.cie.2022.108002 Zhang B, Yao T, Friesz TL, Sun Y (2015) A tractable two-stage robust winner determination model for truckload service procurement via combinatorial auctions. Trans ResB: Methodol 78:16–31. https://doi.org/10.1016/j.trb.2015.03.019