Green vs brown food web: Effects of habitat type on multidimensional stability proxies for a highly-resolved Antarctic food web

Food Webs - Tập 25 - Trang e00166 - 2020
Georgina Cordone1, Vanesa Salinas2, Tomás I. Marina2,3, Santiago R. Doyle2,4, Francesca Pasotti5, Leonardo A. Saravia2,4, Fernando R. Momo2,4
1Centro Para el Estudio de Sistemas Marinos (CESIMAR), Centro Nacional Patagónico (CCT CONICET-CENPAT), Boulevard Brown 2915, U9120 Puerto Madryn, Chubut, Argentina
2Instituto de Ciencias (ICI), Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150, B1613 Los Polvorines, Buenos Aires, Argentina
3Centro Austral de Investigaciones Científicas (CADIC-CONICET), B.A. Houssay 200, V9410 Ushuaia, Tierra del Fuego, Argentina
4Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján, CC 221, B6700 Luján, Buenos Aires, Argentina
5Marine Biology Laboratory, Biology Department, Ghent University, Krijgslaan 281/S8, B-9000 Ghent, Belgium

Tài liệu tham khảo

Albert, 2002, Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47, 10.1103/RevModPhys.74.47 Albert, 2000, Error and attack tolerance of complex networks, Nature, 406, 378, 10.1038/35019019 Albrecht, 1998, Soft bottom versus hard rock: community ecology of macroalgae on intertidal mussel beds in the Wadden Sea, J. Exp. Mar. Biol. Ecol., 229, 85, 10.1016/S0022-0981(98)00044-6 Allesina, 2008, Network structure, predator–prey modules, and stability in large food webs, Theor. Ecol., 1, 55, 10.1007/s12080-007-0007-8 Allesina, 2006, Secondary extinctions in ecological networks: bottlenecks unveiled, Ecol. Model., 194, 150, 10.1016/j.ecolmodel.2005.10.016 Alurralde, 2020, Suspension feeders as natural sentinels of the spatial variability in food sources in an Antarctic fjord: A stable isotope approach, Ecol. Indic., 115, 106378, 10.1016/j.ecolind.2020.106378 Ask, 2016, Importance of coastal primary production in the northern Baltic Sea, Ambio, 45, 635, 10.1007/s13280-016-0778-5 Azam, 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser., 257, 10.3354/meps010257 Baiser, 2012, Geographic variation in network structure of a nearctic aquatic food web, Glob. Ecol. Biogeogr., 21, 579, 10.1111/j.1466-8238.2011.00705.x Baruzzi, 2018, Effects of increasing carrion biomass on food webs, Food Webs, 17, 10.1016/j.fooweb.2018.e00096 Bascompte, 2009, Disentangling the web of life, Science, 325, 416, 10.1126/science.1170749 Bellingeri, 2013, Threshold extinction in food webs, Theor. Ecol., 6, 143, 10.1007/s12080-012-0166-0 Bers, 2013, Analysis of trends and sudden changes in long-term environmental data from King George Island (Antarctica): relationships between global climatic oscillations and local system response, Clim. Chang., 116, 789, 10.1007/s10584-012-0523-4 Bornatowski, 2017, Topological redundancy and ‘small-world’ patterns in a food web in a subtropical ecosystem of Brazil, Mar. Ecol., 38, 10.1111/maec.12407 Borrelli, 2014, Why there are so few trophic levels: selection against instability explains the pattern, Food Webs, 1, 10, 10.1016/j.fooweb.2014.11.002 Borrvall, 2000, Biodiversity lessens the risk of cascading extinction in model food webs, Ecol. Lett., 3, 131, 10.1046/j.1461-0248.2000.00130.x Braeckman, 2019, Degradation of macroalgal detritus in shallow coastal Antarctic sediments, Limnol. Oceanogr., 64, 1423, 10.1002/lno.11125 Brandes, 2004, Visone-analysis and visualization of social networks, 321 Briand, 1984, Community food webs have scale-invariant structure, Nature, 307, 264, 10.1038/307264a0 Bromwich, 2013, Central West Antarctica among the most rapidly warming regions on Earth, Nat. Geosci., 6, 139, 10.1038/ngeo1671 Burnham, 2003 Carreon-Martinez, 2010, Revolution in food web analysis and trophic ecology: diet analysis by DNA and stable isotope analysis, Mol. Ecol., 19, 25, 10.1111/j.1365-294X.2009.04412.x Chesson, 1978, Predator-prey theory and variability, Annu. Rev. Ecol. Syst., 9, 323, 10.1146/annurev.es.09.110178.001543 Clauset, 2009, Power-law distributions in empirical data, SIAM Rev., 51, 661, 10.1137/070710111 Clay, 2017, Towards a geography of omnivory: omnivores increase carnivory when sodium is limiting, J. Anim. Ecol., 86, 1523, 10.1111/1365-2656.12754 Cohen, 1992, A power primer, Psychol. Bull., 112, 155, 10.1037/0033-2909.112.1.155 Cohen, 1990, vol. 20 Cordone, 2018, Effects of macroalgae loss in an Antarctic marine food web: applying extinction thresholds to food web studies, PeerJ, 6, 10.7717/peerj.5531 Cordone, 2020, Metabarcoding, direct stomach observation and stable isotope analysis reveal a highly diverse diet for the invasive green crab in Atlantic Patagonia, bioRxiv Crawley, 2012 Curtsdotter, 2011, Robustness to secondary extinctions: comparing trait-based sequential deletions in static and dynamic food webs, Basic Appl. Ecol., 12, 571, 10.1016/j.baae.2011.09.008 Dalkıran, 2020, Effect of habitat type on algal species diversity and distribution at high altitudes, Ecohydrol. Hydrobiol., 10.1016/j.ecohyd.2020.05.003 Deregibus, 2016, Photosynthetic light requirements and vertical distribution of macroalgae in newly ice-free areas in Potter Cove, South Shetland Islands, Antarctica, Polar Biol., 39, 153, 10.1007/s00300-015-1679-y Dolson, 2009, Lake morphometry predicts the degree of habitat coupling by a mobile predator, Oikos, 118, 1230, 10.1111/j.1600-0706.2009.17351.x Domínguez-García, 2019, Unveiling dimensions of stability in complex ecological networks, Proc. Natl. Acad. Sci., 116, 25714, 10.1073/pnas.1904470116 Donohue, 2013, On the dimensionality of ecological stability, Ecol. Lett., 16, 421, 10.1111/ele.12086 Donohue, 2016, Navigating the complexity of ecological stability, Ecol. Lett., 19, 1172, 10.1111/ele.12648 Ducklow, 2013 Dunne, 2002, Food-web structure and network theory: the role of connectance and size, Proc. Natl. Acad. Sci. U. S. A., 99, 12917, 10.1073/pnas.192407699 Dunne, 2002, Network structure and biodiversity loss in food webs: robustness increases with connectance, Ecol. Lett., 5, 558, 10.1046/j.1461-0248.2002.00354.x Dunne, 2004, Network structure and robustness of marine food webs, Mar. Ecol. Prog. Ser., 273, 291, 10.3354/meps273291 Dunton, 2001, δ15N and δ13C measurements of Antarctic Peninsula fauna: trophic relationships and assimilation of benthic seaweeds, Am. Zool., 41, 99 Eklöf, 2013, Secondary extinctions in food webs: a Bayesian network approach, Methods Ecol. Evol., 4, 760, 10.1111/2041-210X.12062 Estrada, 2007, Food webs robustness to biodiversity loss: the roles of connectance, expansibility and degree distribution, J. Theor. Biol., 244, 296, 10.1016/j.jtbi.2006.08.002 Evans-White, 2017, Comparing the ecological stoichiometry in green and brown food webs–a review and meta-analysis of freshwater food webs, Front. Microbiol., 8, 1184, 10.3389/fmicb.2017.01184 Fenchel, 2008, The microbial loop–25 years later, J. Exp. Mar. Biol. Ecol., 366, 99, 10.1016/j.jembe.2008.07.013 Frank, 2005, Trophic cascades in a formerly cod-dominated ecosystem, Science, 308, 1621, 10.1126/science.1113075 Gellner, 2012, Reconciling the omnivory-stability debate, Am. Nat., 179, 22, 10.1086/663191 Gillespie, 2014 Gillies, 2012, Carbon flow and trophic structure of an Antarctic coastal benthic community as determined by δ13C and δ15N, Estuar. Coast. Shelf Sci., 97, 44, 10.1016/j.ecss.2011.11.003 Grange, 2013, Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity, PLoS One, 8, 10.1371/journal.pone.0077917 Grilli, 2016, Modularity and stability in ecological communities, Nat. Commun., 7, 1, 10.1038/ncomms12031 Hairston, 1960, Community structure, population control, and competition, Am. Nat., 94, 421, 10.1086/282146 Hernández, 2019, Changes in salinity and temperature drive marine bacterial communities’ structure at Potter Cove, Antarctica, Polar Biol., 1 Hoffmann, 2019, Implications of glacial melt-related processes on the potential primary production of a microphytobenthic community in Potter Cove (Antarctica), Front. Mar. Sci., 6, 655, 10.3389/fmars.2019.00655 Holt, 2002, Food webs in space: on the interplay of dynamic instability and spatial processes, Ecol. Res., 17, 261, 10.1046/j.1440-1703.2002.00485.x Hutchinson, 2019, Seeing the forest for the trees: putting multilayer networks to work for community ecology, Funct. Ecol., 33, 206, 10.1111/1365-2435.13237 Jerosch, 2018, Benthic meltwater fjord habitats formed by rapid glacier recession on King George Island, Antarctica, Phil. Trans. R. Soc. A, 376, 10.1098/rsta.2017.0178 Jonsson, 2015, The reliability of R50 as a measure of vulnerability of food webs to sequential species deletions, Oikos, 124, 446, 10.1111/oik.01588 Jost, 2004, The effects of mixotrophy on the stability and dynamics of a simple planktonic food web model, Theor. Popul. Biol., 66, 37, 10.1016/j.tpb.2004.02.001 Kaunzinger, 1998, Productivity controls food-chain properties in microbial communities, Nature, 395, 495, 10.1038/26741 Kéfi, 2015, Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores, Ecology, 96, 291, 10.1890/13-1424.1 Klöser, 1994, Hydrography of Potter Cove, a small fjord-like inlet on King George island (South Shetlands), Estuar. Coast. Shelf Sci., 38, 523, 10.1006/ecss.1994.1036 Klöser, 1996, Distribution of macroalgae and macroalgal communities in gradients of physical conditions in Potter Cove, King George Island, Antarctica, Hydrobiologia, 333, 1, 10.1007/BF00020959 Kortsch, 2015, Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists, Proc. R. Soc. B Biol. Sci., 282 Kortsch, 2019, Food-web structure varies along environmental gradients in a high-latitude marine ecosystem, Ecography, 42, 295, 10.1111/ecog.03443 Krause, 2003, Compartments revealed in food-web structure, Nature, 426, 282, 10.1038/nature02115 Kuijper, 2003, Omnivory and food web dynamics, Ecol. Model., 163, 19, 10.1016/S0304-3800(02)00351-4 Lagger, 2018, Climate change, glacier retreat and a new ice-free island offer new insights on Antarctic benthic responses, Ecography, 41, 579, 10.1111/ecog.03018 Lindeman, 1942, The trophic dynamic aspect of ecology, Ecology, 23, 399, 10.2307/1930126 Ma, 2018, A replicated network approach to ‘big data’ in ecology, vol. 59, 225, 10.1016/bs.aecr.2018.04.001 Marina, 2018, The food web of Potter Cove (Antarctica): complexity, structure and function estuarine, Coast. Shelf Sci., 10.1016/j.ecss.2017.10.015 Marina, 2018, Architecture of marine food webs: to be or not be a ‘small-world’, PLoS One, 13, 10.1371/journal.pone.0198217 Martinez, 1992, Constant connectance in community food webs, Am. Nat., 139, 1208, 10.1086/285382 Massey, 1951, The Kolmogorov-Smirnov test for goodness of fit, J. Am. Stat. Assoc., 46, 68, 10.1080/01621459.1951.10500769 May, 1973 McCann, 1997, Re–evaluating the omnivory–stability relationship in food webs, Proc. R. Soc. Lond. Ser. B Biol. Sci., 264, 1249, 10.1098/rspb.1997.0172 McCann, 2009, The more food webs change, the more they stay the same, Philos. Trans. R. Soc. B Biol. Sci., 364, 1789, 10.1098/rstb.2008.0273 McCann, 1998, Weak trophic interactions and the balance of nature, Nature, 395, 794, 10.1038/27427 McMeans, 2013, Food web structure of a coastal Arctic marine ecosystem and implications for stability, Mar. Ecol. Prog. Ser., 482, 17, 10.3354/meps10278 Memmott, 2004, Tolerance of pollination networks to species extinctions, Proc. R. Soc. Lond. Ser. B Biol. Sci., 271, 2605, 10.1098/rspb.2004.2909 Meredith, 2005, Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century, Geophys. Res. Lett., 32, 10.1029/2005GL024042 Montoya, 2002, Small world patterns in food webs, J. Theor. Biol., 214, 405, 10.1006/jtbi.2001.2460 Montoya, 2006, Ecological networks and their fragility, Nature, 442, 259, 10.1038/nature04927 Moore, 2004, Detritus, trophic dynamics and biodiversity, Ecol. Lett., 7, 584, 10.1111/j.1461-0248.2004.00606.x Neutel, 1994, Global stability of two-level detritus decomposer food chains, J. Theor. Biol., 171, 351, 10.1006/jtbi.1994.1238 Newman, 2003, The structure and function of complex networks, SIAM Rev., 45, 167, 10.1137/S003614450342480 Newman, 2004, Finding and evaluating community structure in networks, Phys. Rev. E, 69, 10.1103/PhysRevE.69.026113 Nicolas, 2014, New reconstruction of Antarctic near-surface temperatures: multidecadal trends and reliability of global reanalyses, J. Clim., 27, 8070, 10.1175/JCLI-D-13-00733.1 Norkko, 2004, Ecological role of Phyllophora antarctica drift accumulations in coastal soft-sediment communities of McMurdo Sound, Antarctica, Polar Biol., 27, 482, 10.1007/s00300-004-0610-8 Norkko, 2007, Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply, Ecology, 88, 2810, 10.1890/06-1396.1 Odum, 1969, The strategy of ecosystem development, Science, 164, 262, 10.1126/science.164.3877.262 Odum, 1975, The detritus-based food web of an estuarine mangrove community, vol. 1, 265 Pascual, 2006 Pasotti, 2015, Antarctic shallow water benthos in an area of recent rapid glacier retreat, Mar. Ecol., 36, 716, 10.1111/maec.12179 Pasotti, 2015, Benthic trophic interactions in an Antarctic Shallow water ecosystem affected by recent glacier retreat, PLoS One, 10, 10.1371/journal.pone.0141742 Pimm, 1982 Pimm, 1984, The complexity and stability of ecosystems, Nature, 307, 321, 10.1038/307321a0 Poisot, 2014, When is an ecological network complex? Connectance drives degree distribution and emerging network properties, PeerJ, 2, e251, 10.7717/peerj.251 Polis, 1996, Food web complexity and community dynamics, Am. Nat., 147, 813, 10.1086/285880 Polis, 1997, Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs, Annu. Rev. Ecol. Syst., 28, 289, 10.1146/annurev.ecolsys.28.1.289 Quartino, 2005, Biological and environmental characterization of marine macroalgal assemblages in Potter Cove, South Shetland Islands, Antarctica, Bot. Mar., 48, 187, 10.1515/BOT.2005.029 Quartino, 2008, Macroalgal production and the energy cycle of Potter Cove, 68 Quartino, 2013, Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica, PLoS One, 8, 10.1371/journal.pone.0058223 R Core, 2019 Romanuk, 2006, The structure of food webs along river networks, Ecography, 29, 3, 10.1111/j.2005.0906-7590.04181.x Rooney, 2006, Structural asymmetry and the stability of diverse food webs, Nature, 442, 265, 10.1038/nature04887 Sahade, 1998, Benthic faunal associations on soft substrates at Potter Cove, King George Island, Antarctica, Polar Biol., 19, 85, 10.1007/s003000050218 Sahade, 2015, Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem, Sci. Adv., 1, 10.1126/sciadv.1500050 Saravia, 2019, lsaravia/multiweb: R package for multiple interaction ecological networks (version v0.2.9), Zenodo Schleuning, 2016, Ecological networks are more sensitive to plant than to animal extinction under climate change, Nat. Commun., 7, 10.1038/ncomms13965 Schloss, 2012, Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in Potter Cove (Antarctica), J. Mar. Syst., 92, 53, 10.1016/j.jmarsys.2011.10.006 Sebens, 1991, Habitat structure and community dynamics in marine benthic systems, 211 Srivastava, 2009, Diversity has stronger top-down than bottom-up effects on decomposition, Ecology, 90, 1073, 10.1890/08-0439.1 Stouffer, 2011, Compartmentalization increases food-web persistence, Proc. Natl. Acad. Sci., 108, 3648, 10.1073/pnas.1014353108 Strona, 2014, A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals, Nat. Commun., 5, 1, 10.1038/ncomms5114 Tatián, 1998, Ascidians (Tunicata, Ascidiacea) of Potter Cove, South Shetland Islands, Antarctica, Antarct. Sci., 10, 147, 10.1017/S0954102098000194 Tatián, 2004, Diet components in the food of Antarctic ascidians living at low levels of primary production, Antarct. Sci., 16, 123, 10.1017/S0954102004001890 Thiel, 2002, Hard rock versus soft bottom: the fauna associated with intertidal mussel beds on hard bottoms along the coast of Chile, and considerations on the functional role of mussel beds, Helgol. Mar. Res., 56, 21, 10.1007/s10152-001-0098-3 Tolonen, 2001, Influences of habitat type and environmental variables on littoral macroinvertebrate communities in a large lake system, Arch. Hydrobiol., 39, 10.1127/archiv-hydrobiol/152/2001/39 Traugott, 2013, Empirically characterising trophic networks: what emerging DNA-based methods, stable isotope and fatty acid analyses can offer, vol. 49, 177, 10.1016/B978-0-12-420002-9.00003-2 Turner, 2005, Antarctic climate change during the last 50 years, Int. J. Climatol., 25, 279, 10.1002/joc.1130 van Altena, 2016, Food web stability and weighted connectance: the complexity-stability debate revisited, Theor. Ecol., 9, 49, 10.1007/s12080-015-0291-7 Vaughan, 2003, Recent rapid regional climate warming on the Antarctic Peninsula, Clim. Chang., 60, 243, 10.1023/A:1026021217991 Vause, 2019, Spatial and temporal dynamics of Antarctic shallow soft-bottom benthic communities: ecological drivers under climate change, BMC Ecol., 19, 27, 10.1186/s12898-019-0244-x Veech, 2012, Significance testing in ecological null models, Theor. Ecol., 5, 611, 10.1007/s12080-012-0159-z Vermaat, 2009, Major dimensions in food-web structure properties, Ecology, 90, 278, 10.1890/07-0978.1 Wahl, 2009, Habitat characteristics and typical functional groups, 7 Wilson, 1990, Competition and predation in marine soft-sediment communities, Annu. Rev. Ecol. Syst., 21, 221, 10.1146/annurev.es.21.110190.001253 Wolkovich, 2014, Linking the green and brown worlds: the prevalence and effect of multichannel feeding in food webs, Ecology, 95, 3376, 10.1890/13-1721.1 Wootton, 2017, Omnivory and stability in freshwater habitats: does theory match reality?, Freshw. Biol., 62, 821, 10.1111/fwb.12908 Yen, 2016, Linking structure and function in food webs: maximization of different ecological functions generates distinct food web structures, J. Anim. Ecol., 85, 537, 10.1111/1365-2656.12484 Zou, 2016, Interactions between the green and brown food web determine ecosystem functioning, Funct. Ecol., 30, 1454, 10.1111/1365-2435.12626