Sử dụng chất thải silicon: tái chế Si và chuẩn bị đồng thời silicon xốp làm vật liệu anode cho pin lithium-ion

Ionics - Tập 29 - Trang 5099-5110 - 2023
Bin Wang1, Yuehao Guo1, Jinjing Du1, Qian Li1, Xuan Zhang1, Yanru Bao1, Jingtian Liu1, Dongbo Wang1, Jiayi Ma1, Yu Zhou1
1School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an, China

Tóm tắt

Với sự phát triển rực rỡ của ngành công nghiệp quang điện, chất thải silicon tạo ra từ quá trình cắt silicon đã trở thành một vấn đề môi trường nghiêm trọng, cùng với việc lãng phí nguồn tài nguyên silicon. Trong bài báo này, chất thải silicon sản xuất từ ngành công nghiệp quang điện được sử dụng làm nguyên liệu thô. Các hạt silicon xốp đã được tổng hợp bằng phương pháp khử nhiệt magie, kết hợp với quá trình ăn mòn bằng axít hydrofluoric. Silicon xốp có thể được áp dụng làm vật liệu anode cho các pin lithium-ion. Hiệu ứng cộng hưởng của quá trình khử nhiệt magie và ăn mòn axít đối với việc chuẩn bị các vật liệu silicon xốp đã được nghiên cứu. Tốc độ gia nhiệt thấp hơn là 5 °C/phút sẽ dẫn đến việc tích tụ nhiệt ít hơn, giúp tránh sự hình thành các hạt Si/MgO có kích thước lớn và đạt được hình thái phân tán tốt. Sau mật độ dòng điện 100 mA·g−1, khả năng hồi phục của anode silicon xốp đạt 751.1 mAh/g sau 50 chu trình. So với nano silicon thương mại, độ ổn định và hiệu suất chu trình của nó đã được cải thiện, cung cấp một phương pháp mới cho việc tái sử dụng xanh chất thải silicon trong ngành công nghiệp quang điện.

Từ khóa

#silicon xốp #chất thải silicon #pin lithium-ion #khử nhiệt magie #ăn mòn axít

Tài liệu tham khảo

Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176. https://doi.org/10.1021/ja3091438 Su X, Wu Q, Li J et al (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 4(1):1300882. https://doi.org/10.1002/aenm.201300882 Liu Y, Zhou G, Liu K et al (2017) Design of complex nanomaterials for energy storage: past success and future opportunity. Acc Chem Res 50(12):2895–2905. https://doi.org/10.1021/acs.accounts.7b00450 Pomerantseva E, Bonaccorso F, Feng X et al (2019) Energy storage: the future enabled by nanomaterials. Science 366(6468):eaan8285. https://doi.org/10.1126/science.aan8285 Chen X, Li H, Yan Z et al (2019) Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Science China Mater 62(11):1515–1536. https://doi.org/10.1007/s40843-019-9464-0 Asenbauer J, Eisenmann T, Kuenzel M et al (2020) The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain Energy Fuels 4(11):5387–5416. https://doi.org/10.1039/D0SE00175A Ge M, Cao C, Biesold GM et al (2021) Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Adv Mater 33(16):e2004577. https://doi.org/10.1002/adma.202004577 Wang L, Xi F, Zhang Z et al (2021) Recycling of photovoltaic silicon waste for high-performance porous silicon/silver/carbon/graphite anode. Waste Manag 132:56–63. https://doi.org/10.1016/j.wasman.2021.07.014 Yi Z, Lin N, Zhao Y et al (2019) A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes. Energy Storage Materials 17:93–100. https://doi.org/10.1016/j.ensm.2018.07.025 Chen H, Wang Z, Hou X et al (2017) Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochim Acta 249:113–121 Wang J, Huang W, Kim YS et al (2020) Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Res 13(6):1558–1563. https://doi.org/10.1007/s12274-020-2770-4 Liu Z, Yu Q, Zhao Y et al (2019) Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem Soc Rev 48(1):285–309. https://doi.org/10.1039/c8cs00441b Jin Y, Zhu B, Lu Z et al (2017) Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv Energy Mater 7(23):1700715. https://doi.org/10.1002/aenm.201700715 Wang K, Pei S, He Z et al (2019) Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes. Chem Eng J 356:272–281. https://doi.org/10.1016/j.cej.2018.09.027 Liu Z, Guan D, Yu Q et al (2018) Monodisperse and homogeneous SiOx/C microspheres: a promising high-capacity and durable anode material for lithium-ion batteries. Energy Storag Mater 13:112–118. https://doi.org/10.1016/j.ensm.2018.01.004 Zhu J, Wierzbicki T, Li W (2018) A review of safety-focused mechanical modeling of commercial lithium-ion batteries. J Power Sources 378:153–168. https://doi.org/10.1016/j.jpowsour.2017.12.034 Casimir A, Zhang H, Ogoke O et al (2016) Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation. Nano Energy 27:359–376. https://doi.org/10.1016/j.nanoen.2016.07.023 Zheng G, Lee SW, Liang Z et al (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9(8):618–623. https://doi.org/10.1038/nnano.2014.152 Ren W, Wang Y, Zhang Z et al (2016) Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: can the production process be cheaper and greener? J Mater Chem A 4(2):552–560. https://doi.org/10.1039/C5TA07487H Wu Y, Chen G, Wang Z et al (2018) In situ constructed Ag/C conductive network enhancing the C-rate performance of Si based anode. J Energy Storag 17:102–108. https://doi.org/10.1016/j.est.2018.02.016 Jia H, Zheng J, Song J et al (2018) A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy 50:589–597. https://doi.org/10.1016/j.nanoen.2018.05.048 Zhang L, Zhang L, Chai L et al (2014) A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J Mater Chem A 2(44):19036–19045. https://doi.org/10.1039/C4TA04320K Saga T (2010) Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater 2(3):96–102. https://doi.org/10.1038/asiamat.2010.82 Li JW, Lin YH, Wang FM et al (2021) Progress in recovery and recycling of kerf loss silicon waste in photovoltaic industry. Sep Purif Technol 254. https://doi.org/10.1016/j.seppur.2020.117581 Liu Y, S Wang, S Jiang et al(2019) Clean synthesis and formation mechanisms of high-purity silicon for solar cells by the carbothermic reduction of SiC with SiO2 ChemistrySelec t4(14): 4025-4034. https://doi.org/10.1002/slct.201900287 Maeng S-H, Lee H, Park MS et al (2020) Ultrafast carbothermal reduction of silica to silicon using a CO2 laser beam. Sci Rep 10(1):21730. https://doi.org/10.1038/s41598-020-78562-1 Zheng C-H, Zhang G-P, Wang S-S et al (2021) Efficient transformation of rice husk to a high-performance Si@SiO2@C anode material by a mechanical milling and molten salt coactivated magnesiothermic reduction. J Alloys Compd 875:159974. https://doi.org/10.1016/j.jallcom.2021.159974 Tao H-C, Fan L-Z, Qu X (2012) Facile synthesis of ordered porous Si@C nanorods as anode materials for Li-ion batteries. Electrochim Acta 71:194–200. https://doi.org/10.1016/j.electacta.2012.03.139 Li Q, Yin L, Ma J et al (2015) Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries. Energy 85:159–166. https://doi.org/10.1016/j.energy.2015.03.090 Zhong H, Zhan H, Zhou Y-H (2014) Synthesis of nanosized mesoporous silicon by magnesium-thermal method used as anode material for lithium ion battery. J Power Sources 262:10–14. https://doi.org/10.1016/j.jpowsour.2014.03.108 Ma X, Liu M, Gan L et al (2014) Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries. Phys Chem Chem Phys 16(9):4135–4142. https://doi.org/10.1039/C3CP54507E Li Q, Yin L, Gao X (2015) Reduction chemical reaction synthesized scalable 3D porous silicon/carbon hybrid architectures as anode materials for lithium ion batteries with enhanced electrochemical performance. RSC Adv 5(45):35598–35607. https://doi.org/10.1039/C5RA05342K Bao Z, Weatherspoon MR, Shian S et al (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446(7132):172–175. https://doi.org/10.1038/nature05570 Arafat MY, Islam MA, Mahmood AWB et al (2021) Fabrication of black silicon via metal-assisted chemical etching—a review. Sustain 13(19):10766 Shi L, Wang W, Wang A et al (2016) Understanding the impact mechanism of the thermal effect on the porous silicon anode material preparation via magnesiothermic reduction. J Alloys Compd 661:27–37. https://doi.org/10.1016/j.jallcom.2015.11.196 Daulay A, Andriayani M et al (2022) Scalable synthesis of porous silicon nanoparticles from rice husk with the addition of KBr as a scavenger agent during reduction by the magnesiothermic method as anode lithium-ion batteries with sodium alginate as the binder. South African J Chem Eng 41:203–210. https://doi.org/10.1016/j.sajce.2022.06.005 Liu N, Huo K, Mcdowell MT et al (2013) Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci Rep 3(1):1919. https://doi.org/10.1038/srep01919 Fan ZQ, Zheng SS, He S et al (2020) Preparation of micron Si@C anodes for lithium ion battery by recycling the lamellar submicron silicon in the kerf slurry waste from photovoltaic industry. Diam Relat Mater 107. https://doi.org/10.1016/j.diamond.2020.107898 Zhang SY, Xie J, Wu CY et al (2020) A low-cost preparation of Si@C composite anode from Si photovoltaic waste. Int J Electrochem Sci 15(7):6582–6595. https://doi.org/10.20964/2020.07.24 Li Q, Jiang R, Dou Y et al (2011) Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon 49(4):1248–1257. https://doi.org/10.1016/j.carbon.2010.11.043 Mukherjee R, Krishnan R, Lu T-M et al (2012) Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1(4):518–533. https://doi.org/10.1016/j.nanoen.2012.04.001 Chen X, Li C, Grätzel M et al (2012) Nanomaterials for renewable energy production and storage. Chem Soc Rev 41(23):7909–7937. https://doi.org/10.1039/C2CS35230C Hochgatterer NS, Schweiger MR, Koller S et al (2008) Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem Solid-State Lett 11(5):A76. https://doi.org/10.1149/1.2888173 Soulairol I, Sanchez-Ballester NM, Aubert A et al (2018) Evaluation of the super disintegrant functionnalities of alginic acid and calcium alginate for the design of orodispersible mini tablets. Carbohydr Polym 197:576–585. https://doi.org/10.1016/j.carbpol.2018.06.002 Wu Z-Y, Deng L, Li J-T et al (2017) Multiple hydrogel alginate binders for Si anodes of lithium-ion battery. Electrochim Acta 245:371–378. https://doi.org/10.1016/j.electacta.2017.05.094 Wang JP, Zhang L, Zhang HT (2018) Effects of electrolyte additive on the electrochemical performance of Si/C anode for lithium-ion batteries. IONICS 24(11):3691–3698. https://doi.org/10.1007/s11581-018-2682-4 Ren W-F, Zhou Y, Li J-T et al (2019) Si anode for next-generation lithium-ion battery. Curr Opinion Electrochem 18:46–54. https://doi.org/10.1016/j.coelec.2019.09.006