Các hạt nano vàng tổng hợp xanh kích thích sự thích nghi trong phản ứng quang hợp, chuyển hóa đường và nitơ, cũng như năng suất hạt của cây cải thìa chịu stress mặn

Sayeda Khatoon1, Moksh Mahajan1, Sarika Kumari1, Noushina Iqbal1, Iram Wahid2, M. Iqbal R. Khan1
1Department of Botany, Jamia Hamdard, New Delhi, India
2Department of Biosciences, Integral University, Lucknow, India

Tóm tắt

Căng thẳng muối đã ảnh hưởng nghiêm trọng đến năng suất nông nghiệp, làm giảm sản lượng cây trồng và dẫn đến sự bất ổn thực phẩm trên toàn cầu. Những hậu quả này dự kiến sẽ tiếp tục gia tăng vào năm 2050, dẫn đến mất 50% diện tích đất canh tác, gây ra sự vô sinh của đất và do đó làm cho chúng không còn thích hợp cho sự tồn tại của cây trồng. Do đó, để giải quyết những khó khăn do muối gây ra, cần thiết phải thích ứng với các phương pháp mang lại lợi nhuận và thân thiện với môi trường nhằm giải quyết những mối quan tâm liên quan đến sức khỏe và sự sống còn của cây trồng trong bối cảnh căng thẳng. Với sự liên quan này, các hạt nano vàng (AuNPs) được tổng hợp xanh đang nổi lên như một lĩnh vực thu hút sự quan tâm lớn để nâng cao sản xuất bền vững của cây trồng nhằm cải thiện khả năng thích nghi của cây trong những môi trường đầy thách thức, bao gồm cả stress muối. Nghiên cứu hiện tại thảo luận về tầm quan trọng của các AuNPs tổng hợp xanh trong việc điều chỉnh phòng thủ xuyên suốt các quỹ đạo kháng oxy hóa để quản lý những tổn thương oxy hóa do muối gây ra ở cây cải thìa. Thêm vào đó, sự điều chỉnh do AuNPs gây ra trong chức năng quang hợp, chuyển hóa đường và nitơ cùng với hành vi khí khổng đã ức chế đáng kể những bất thường do muối gây ra trong sự phát triển và sinh lý của cây cải thìa. Tổng thể, nghiên cứu đã chỉ ra phản ứng có lợi của AuNPs tổng hợp xanh, có thể được coi như là 'chất kích thích tăng trưởng' trong các chế độ bị thách thức bởi muối nhằm bảo vệ phản ứng của cây cải thìa với mức độ thiệt hại năng suất được giảm thiểu.

Từ khóa

#Cây cải thìa #Hạt nano vàng #Căng thẳng muối #Tăng trưởng bền vững #Tắc nghẽn oxy hóa

Tài liệu tham khảo

Ahmed S, Ikram S (2016) Biosynthesis of gold nanoparticles: a green approach. J Photochem Photobiol B Biol 161:141–53 Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal R (2017) Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plant 23:731–744 Akyol TY, Yilmaz O, Uzilday B, Uzildayrö Tİ (2020) Plant response to salinity: an analysis of ROS formation, signaling, and antioxidant defense. Turk J Bot 44(1):1–3 Asiya SI, Pal K, Kralj S, El-Sayyad GS, de Souza FG, Narayanan T (2020) Sustainable preparation of gold nanoparticles via green chemistry approach for biogenic applications. Mat Tod Chem 17:100327 Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190 Asthir B, Kaur G, Kaur B (2020) Convergence of pathways towards ascorbate–glutathione for stress mitigation. J Plant Biol 63:243–257 Awad MA, Eisa NE, Virk P, Hendi AA, Ortashi KM, Mahgoub AS, Elobeid MA, Eissa FZ (2019) Green synthesis of gold nanoparticles: preparation, characterization, cytotoxicity, and anti-bacterial activities. Mat Lett 256:126608 Ayub MA, Ahmad HR, Ali M, Rizwan M, Ali S, urRehman MZ, Waris AA (2020) Salinity and its tolerance strategies in plants. Plant life under changing environment. Academic Press, Cambridge, pp 47–76 Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201 Bertolino LT, Caine RS, Gray JE (2019) Impact of stomatal density and morphology on water-use efficiency in a changing world. Front Plant Sci 10:225 Beyer WF Jr, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161(2):559–566 Cai J, Chen T, Wang Y, Qin G, Tian S (2020) SlREM1 triggers cell death by activating an oxidative burst and other regulators. Plant Physiol 183(2):717–732 Chen F, Wang F, Wu F, Mao W, Zhang G, Zhou M (2010) Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol Biochem 48(8):663–672 Dawalibi V, Monteverdi MC, Moscatello S, Battistelli A, Valentini R (2015) Effect of salt and drought on growth, physiological and biochemical responses of two Tamarix species. iForest-Biogeosci For 8(6):772 Dietz KJ, Mittler R, Noctor G (2016) Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiol 171(3):1535–1539 Dong S, Beckles DM (2019) Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. J Plant Physiol 234:80–93 Dorion S, Ouellet JC, Rivoal J (2021) Glutathione metabolism in plants under stress: beyond reactive oxygen species detoxification. Metabolites 11(9):641 Elia AC, Galarini R, Taticchi MI, Dörr AJ, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotox Environ Saf 55(2):162–167 Faraz A, Faizan M, Sami F, Siddiqui H, Pichtel J, Hayat S (2019) Nanoparticles: biosynthesis, translocation and role in plant metabolism. Iet Nanobiotechnol 13(4):345–352 Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25 Fu H, Yang Y (2023) How plants tolerate salt stress. Curr Iss Mol Biol 45(7):5914–5934 Gour A, Jain NK (2019) Advances in green synthesis of nanoparticles. Art Cell Nanomed Biotech 47(1):844–851 Govindasamy P, Muthusamy SK, Bagavathiannan M, Mowrer J, Jagannadham PT, Maity A, Halli HM, GK S, Vadivel R, TK D, Raj R (2023) Nitrogen use efficiency—a key to enhance crop productivity under a changing climate. Front Plant Sci 14:1121073 Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reducatse and 2-vinylpiridyne. Anal Biochem 106(1980):207–212 Hageman RH, Reed AJ (1980) Nitrate reductase from higher plants. Meth Enzymol 69:270–280 Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–98 Hedge JE, Hofreiter BT, Whistler RL (1962) Carbohydrate chemistry. Acad Press, New York, pp 371–80 Hilty J, Muller B, Pantin F, Leuzinger S (2021) Plant growth: the what, the how, and the why. New Phytol 232:25–41 Hossain MZ, Hossain MD, Fujita M (2006) Induction of pumpkin glutathione S-transferases by different stresses and its possible mechanisms. Biol Plant 50:210–218 Huber SC (1981) Interspecific variation in activity and regulation of leaf sucrose phosphate synthetase. Zeitfür Pflanzen 102(5):443–450 Islam NU, Jalil K, Shahid M, Rauf A, Muhammad N, Khan A, Shah MR, Khan MA (2019) Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J Chem 12(8):2914–2925 Khan MI, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251:1007–1019 Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74 Khan MIR, Jahan B, AlAjmi MF, Rehman MT, Khan NA (2020) Ethephon mitigates nickel stress by modulating antioxidant system, glyoxalase system and proline metabolism in Indian mustard. Physiol Mol Biol Plant 26:1201–1213 Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468 Kumari S, Khanna RR, Nazir F, Albaqami M, Chhillar H, Wahid I, Khan MI (2022) Bio-synthesized nanoparticles in developing plant abiotic stress resilience: a new boon for sustainable approach. Int J Mol Sci 23(8):4452 Kuo TM, Warner RL, Kleinhofs A (1982) In vitro stability of nitrate reductase from barley leaves. Phytochemistry 21(3):531–533 Leonowicz G, TrzebuniakKF Z-P, Ślesak I, Mysliwa-Kurdziel B (2018) The activity of superoxide dismutases (SODs) at the early stages of wheat deetiolation. PLoS ONE 13(3):e0194678 Liao Q, Ding R, Du T, Kang S, Tong L, Li S (2022) Stomatal conductance drives variations of yield and water use of maize under water and nitrogen stress. Agri Water Manag 268:107651 Liao Q, Ding R, Du T, Kang S, Tong L, Li S (2023) Salinity-specific stomatal conductance model parameters are reduced by stomatal saturation conductance and area via leaf nitrogen. Sci Total Environ 876:162584 Lindner RC (1944) Rapid analytical methods for some of the more common inorganic constituents of plant tissues. Plant Physiol 19(1):76 Liu J, Fu C, Li G, Khan MN, Wu H (2021) ROS homeostasis and plant salt tolerance: plant nanobiotechnology updates. Sustainability 13(6):3552 Liu X, Hu B, Chu C (2022) Nitrogen assimilation in plants: current status and future prospects. J Genet Genom 49(5):394–404 Lotfi R, Abbasi A, Kalaji HM, Eskandari I, Sedghieh V, Khorsandi H, Sadeghian N, Yadav S, Rastogi A (2022) The role of potassium on drought resistance of winter wheat cultivars under cold dryland conditions: probed by chlorophyll a fluorescence. Plant Physiol Biochem 182:45–54 Luwe MW, Takahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol 101(3):969–76 Ma L, Liu X, Lv W, Yang Y (2022) Molecular mechanisms of plant responses to salt stress. Front Plant Sci 13:934877 Masato O (1980) An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Clin Chim Acta 103(3):259–268 Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668 Meena SS, Meena PD, Singh VV, Meena HS, Singh D, Yadav R, Singh KH, Sharma P, Nanjundan J, Singh BK, Singh YP (2019) DRMR-2019 (IC0598622; INGR17077), An Indian mustard (Brassica juncea) germplasm with white rust resistance. Ind J Plant Gen Res 32(2):281–281 Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681 Mustafa G, Akhtar MS, Abdullah R (2019) Global concern for salinity on various agro-ecosystems. Salt Stress Microbe Plant Interact Causes Solut 1:1–9 Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880 Nazar R, Khan MIR, Iqbal N, Masood A, Khan NA (2014) Involvement of ethylene in reversal of salt-inhibited photosynthesis by sulfur in mustard. Physiol Plant 152:331–344 Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE (2017) Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep 36:791–805 Okuda T, Matsuda Y, Yamanaka A, Sagisaka S (1991) Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol 97(3):1265–1267 Pullela PK, Korrapati S, Reddy KS, Uthirapathy V (2022) Concentration of gold nanoparticles at near Zero-cost. Mat Tod Proceed 1(54):255–258 Rastogi A, Zivcak M, Tripathi DK, Yadav S, Kalaji HM (2019) Phytotoxic effect of silver nanoparticles in Triticum aestivum: improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica 57(1):209–216 Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KH, Singh RK, Zhuang W (2022) Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotech 12:1–28 Ribeiro C, Stitt M, Hotta CT (2022) How stress affects your budget—stress impacts on starch metabolism. Front Plant Sci 13:774060 Sakhno LO, Yemets AI, Blume YB (2019) The role of ascorbate-glutathione pathway in reactive oxygen species balance under abiotic stresses. React Oxyg Nitrogen Sulfur Species Plants Prod Metab Signal Def Mech 18:89–111 Santhosh PB, Genova J, Chamati H (2022) Green synthesis of gold nanoparticles: an eco-friendly approach. Chemistry 4(2):345–369 Saripalli G, Gupta PK (2015) AGPase: Its role in crop productivity with emphasis on heat tolerance in cereals. Theor Appl Genet 128:1893–1916 Sarita AK, Avtar R, Rani B, Goyal V, Ahlawat P (2022) Germination and early growth of Indian mustard (Brassica juncea L.) genotypes under saline conditions. J Oilseed Brassica 13(2):143–52 Singh G (2009) Salinity-related desertification and management strategies: Indian experience. Land Degrad Develop 20(4):367–385 Singh J, Singh V, Vineeth TV, Kumar P, Kumar N, Sharma PC (2019) Differential response of Indian mustard (Brassica juncea L., Czern and Coss) under salinity: photosynthetic traits and gene expression. Physiol Mol Biol Plant 25:71–83 Singh J, Singh V, Dutt V, Walia N, Kumawat G, Jakhar ML, Yadava DK, Sharma PC (2022) Insights into salt tolerance of mustard (Brassica juncea L. Czern & Coss): a metabolomics perspective. Environ Exp Bot 1(194):104760 Song Y, Zheng C, Basnet R, Li S, Chen J, Jiang M (2022) Astaxanthin synthesized gold nanoparticles enhance salt stress tolerance in rice by enhancing tetrapyrrole biosynthesis and scavenging reactive oxygen species in vitro. Plant Stress 6:100122 Stein O, Granot D (2019) An overview of sucrose synthases in plants. Front Plant Sci 10:95 Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant J 11(6):1187–94 Usuda H (1985) The activation state of ribulose 1, 5-bisphosphate carboxylase in maize leaves in dark and light. Plant Cell Physiol 26(8):1455–1463 Wahid I, Rani P, Kumari S, Ahmad R, Hussain SJ, Alamri S, Tripathy N, Khan MIR (2022) Biosynthesized gold nanoparticles maintained nitrogen metabolism, nitric oxide synthesis, ions balance, and stabilizes the defense systems to improve salt stress tolerance in wheat. Chemosphere 287:132142 Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–4 Wani AS, Ahmad A, Hayat S, Tahir I (2019) Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiol Biochem 135:385–394 Xie LY, Lin ED, Zhao HL, Feng YX (2016) Changes in the activities of starch metabolism enzymes in rice grains in response to elevated CO2 concentration. Int J Biom 60:727–736 Xu Z, Zhou G (2008) Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot 59(12):3317–3325 Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217(2):523–539 Yousuf PY, Ahmad A, Ganie AH, Sareer O, Krishnapriya V, Aref IM, Iqbal M (2017) Antioxidant response and proteomic modulations in Indian mustard grown under salt stress. Plant Growth Regul 81:31–50 Zelitch I (1982) The close relationship between net photosynthesis and crop yield. Bioscience 32(10):796–802