Green synthesis of wurtzite copper zinc tin sulfide nanocones for improved solar photovoltaic utilization

Applied Nanoscience - Tập 5 - Trang 163-167 - 2014
Leena Arora1, Poonam Gupta1, Nitu Chhikara1, Om Pal Singh1, N. Muhunthan1, V. N. Singh1, B. P. Singh1, Kiran Jain1, S. Chand1
1CSIR-National Physical Laboratory, New Delhi, India

Tóm tắt

Cu2ZnSnS4 (CZTS) is considered to be one of the most promising light absorbing materials for low-cost and high-efficiency thin-film solar cells. It is composed of earth abundant, non-toxic elements. In the present study, wurtzite CZTS nanocone has been synthesized by a green chemistry route. The nanocones have been characterized for its optical, structural and microstructural properties using UV–Vis spectrophotometer, X-ray diffraction, Raman spectroscopy and high-resolution transmission electron microscopy. Optical absorption result shows a band gap of 1.42 eV. XRD and Raman results show wurtzite structure and TEM studies reveal the nanocone structure of the grown material. Growing vertically aligned nanocone structure having smaller diameter shall help in enhancing the light absorption in broader range which shall enhance the efficiency of solar cell. This study is a step in this direction.

Tài liệu tham khảo

Babu GS, Kumar YBK, Bhaskar PU, Raja VS (2010) Effect of Cu/(Zn + Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films. Sol Energ Mater Sol Cells 94:221–226 Chen S, Gong XG, Walsh A, Wei S-H (2009) Crystal and electronic band structure of CuZnSnX (X = S and Se) photovoltaic absorbers: first-principles insights. Appl Phys Lett 94:041903 Fan F-J, Wu L, Yu S-H (2014) Energetic I–III–VI2 and I2–II–IV–VI4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energy Environ Sci 7:190–208 Fernandes PA, Salome PMP, da Cunha AF (2009) Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films 517:2519–2523 Guo Q, Hillhouse HW, Agrawal R (2009) Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J Am Chem Soc 131:11672–11673 Guo Q, Ford GM, Yang W-C, Walker BC, Stach EA, Hillhouse HW, Agrawal R (2010) Fabrication of 7.2 % efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc 132:17384–17386 Hsu C-M, Connor ST, Tang MX, Cui Y (2008) Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching. Appl Phys Lett 93:133109 Jiang H, Dai P, Feng Z, Fan W, Zhan J (2012) Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. J Mater Chem 22:7502–7506 Katagiri H, Jimbo K, Maw WS, Oishi K, Yamazaki M, Araki H, Takeuchi A (2009) Development of CZTS-based thin film solar cells. Thin Solid Films 517:2455–2560 Li M, Zhou W-H, Guo J, Zhou Y-L, Hou Z-L, Jiao J, Zhou Z-J, Du Z-L, Wu S-X (2012) Synthesis of pure metastable wurtzite CZTS nanocrystals by facile one-pot method. J Phys Chem C 116:26507–26516 Liu WC, Guo BL, Wu XS, Zhang FM, Mak CL, Wong KH (2013) Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4 nanocrystal quantum dots: band-gap engineering and phonon confinement effect. J Mater Chem A 1:3182–3186 Lu X, Zhuang Z, Peng Q, Li Y (2011) Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. Chem Commun 47:3141–3143 Mainz R, Singh A, Levcenko S, Klaus M, Genzel C, Ryan KM, Unold T (2014) Phase-transition-driven growth of compound semiconductor crystals from ordered metastable nanorods. Nature Commun 5:3133 Mehta BR, Kruis FE (2005) A graded diameter and oriented nanorod-thin film structure for solar cell applications: a device proposal. Sol Energ Mater Sol Cells 85:107–113 Mitzi DB, Gunawan O, Todorov TK, Wang K, Guha S (2011) The path towards a high-performance solution-processed kesterite solar cell. Sol Energ Mater Sol Cells 95:1421–1436 Muhunthan N, Singh OP, Singh S, Singh VN (2013) Growth of CZTS thin films by co-sputtering of metal targets and sulfurization in H2S. Int J Photoenergy 2013:752012 Regulacio MD, Ye C, Lim SH, Bosman M, Ye E, Chen S, Xu Q-H, Han M-Y (2012) Colloidal nanocrystals of wurtzite-type Cu2ZnSnS4: facile noninjection synthesis and formation mechanism. Chem Eur J 18:3127–3131 Riha SC, Parkinson BA, Prieto AL (2009) Compositionally tunable Cu2ZnSn(S(1-x)Se(x))4 nanocrystals: probing the effect of Se-inclusion in mixed chalcogenide thin films. J Am Chem Soc 131:12054–12055 Shavel A, Arbiol J, Cabot A (2010) Synthesis of quaternary chalcogenide nanocrystals: stannite Cu(2)Zn(x)Sn(y)Se(1+x+2y). J Am Chem Soc 132:4514–4515 Singh A, Geaney H, Laffir F, Ryan KM (2012) Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J Am Chem Soc 134:2910–2913 Tanaka K, Moritake N, Uchiki H (2007) Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors. Sol Energy Mater Sol Cells 91:1199–1201 Wang B, Leu PW (2012) Enhanced absorption in silicon nanocone arrays for photovoltaics. Nanotechnology 23:194003 Weber A, Krauth H, Perlt S, Schubert B, Kotschau I, Schorr S, Schock HW (2009) Multi-stage evaporation of Cu2ZnSnS4 thin films. Thin Solid Films 517:2524–2526 Yu Z, Fan S, Brongersma ML, McGehee MD, Cui Y (2012) Hybrid silicon nanocone–polymer solar cells. Nano Lett 12:2971–2976 Zhao Y, Qiao Q, Zhou W-H, Cheng X-Y, Kou D-X, Zhou Z-J, Wu S-X (2014) Wurtzite Cu2ZnSnS4 nanospindles with enhanced optical and electrical properties. Chem Phys Lett 592:144–148