Tổng hợp bạc nanoparticle xanh từ Piper nigrum: Tích lũy sinh học theo mô, bệnh học và phản ứng căng thẳng oxy hóa trong cá chép lớn Ấn Độ Labeo rohita

Springer Science and Business Media LLC - Tập 25 - Trang 11812-11832 - 2018
Chellappan Shobana1, Basuvannan Rangasamy1, Rama Krishnan Poopal1,2, Sivashankar Renuka1, Mathan Ramesh1
1Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, India
2Environmental Toxicology and Toxicogenomics Laboratory, Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India

Tóm tắt

Mục tiêu của cuộc điều tra hiện tại là đánh giá độc tính dưới ngưỡng chết (sublethal toxicity) của bạc nanoparticle (Ag NPs) được tổng hợp sinh học trên loài cá chép lớn Ấn Độ Labeo rohita. Ag NPs được sử dụng trong nghiên cứu được tổng hợp bằng cách sử dụng AgNO3 với dịch chiết lá Piper nigrum. Nồng độ gây chết trung bình (LC50) của Ag NPs được tổng hợp được xác định trong 96 giờ (25 μg/L); 2.5 μg/L (1/10 LC50) và 5 μg/L (1/5 LC50) được lấy làm nồng độ dưới ngưỡng chết để đánh giá độc tính trong 35 ngày. Kết quả phân tích TEM, SEM và EDX cho thấy Ag NPs đã tích lũy đáng kể trong mang, gan và thận của cá ở cả hai nồng độ (2.5 và 5 μg/L). Do đó, hoạt động của các enzyme chống oxy hóa, SOD và CAT, đã giảm đáng kể (P < 0.05) trong mang, gan và thận so với nhóm đối chứng trong suốt thời gian nghiên cứu. Tuy nhiên, hoạt động của lipid peroxidase (LPO) trong mang, gan và thận đã tăng đáng kể (P < 0.05), và kết quả cho thấy có thể có dấu hiệu căng thẳng oxy hóa do gốc tự do trong cá tiếp xúc với Ag NPs so với những cá được tiếp xúc giả. Nghiên cứu bệnh lý cũng xác nhận những biến đổi như thoái hóa lá mang, nâng đỡ biểu mô lá mang, hoại tử gan, nhân pyknotic, tăng khoảng cách nội bào, và co lại của cầu thận do Ag NPs gây ra ở mang, gan và thận của Labeo rohita với hai nồng độ khác nhau. Các phát hiện của nghiên cứu hiện tại chỉ ra rằng việc tổng hợp xanh các Ag NPs từ Piper nigrum ở nồng độ dưới ngưỡng chết dẫn đến tích lũy Ag, căng thẳng oxy hóa và biến đổi bệnh lý trong các cơ quan mục tiêu của cá Labeo rohita.

Từ khóa

#bạc nanoparticle #tổng hợp sinh học #độc tính #căng thẳng oxy hóa #Labeo rohita

Tài liệu tham khảo

Abdel-Khalek A (2015) Risk assessment, bioaccumulation of metals and histopathological alterations in Nile tilapia (Oreochromis niloticus) facing degraded aquatic conditions. Bull Environ Contam Toxicol 94(1):77–83. https://doi.org/10.1007/s00128-014-1400-9 Aebi H (1974) Catalase. In: Bergmeyer HV (ed) Methods in enzymatic analysis. Academic Press, New York, pp 674–684. https://doi.org/10.1016/B978-0-12-091302-2.50032-3 Afifi M, Saddick S, Abu Zinada OA (2016) Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 23(6):754–760. https://doi.org/10.1016/j.sjbs.2016.06.008 Al-Bairuty GA, Shaw BJ, Handy RD, Henry TB (2013) Histopathological effects of waterborne copper and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 126:104–115. https://doi.org/10.1016/j.aquatox.2012.10.005 APHA (American Public Health Association) (2005) Standard methods for the examination of water and wastewater, 21st edn. Port City Press, Baltimore Ates M, Daniels J, Arslan Z, Farah IO (2015) Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of gold fish (Carassius auratus). Environ Toxicol 30(1):119–128. https://doi.org/10.1002/tox.22002 Ates M, Demir V, Arslan Z, Kaya H, Yılmaz S, Camas M (2016) Chronic exposure of tilapia (Oreochromis niloticus) to iron oxide nanoparticles, effects of particle morphology on accumulation, elimination, hematology and immune responses. Aquat Toxicol 177:22–32. https://doi.org/10.1016/j.aquatox.2016.05.005 Barmo C, Ciacci C, Canonico B, Fabbri R, Cortese K, Balbi T, Marcomini A, Pojana G, Gallo G, Canesi L (2013) In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquat Toxicol 132-133:9–18. https://doi.org/10.1016/j.aquatox.2013.01.014 Batley GE, Kirby JK, Mc Laughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46(3):854–862. https://doi.org/10.1021/ar2003368 Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139. https://doi.org/10.1021/es7032718 Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E (2012) In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol 2012:1–9. https://doi.org/10.1155/2012/293784 Bindhu MR, Umadevi M (2015) Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 135:373–378. https://doi.org/10.1016/j.saa.2014.07.045 Calienni MN, Feas DA, Igartúa DE, Chiaramoni NS, del Valle AS, Prieto MJ (2017) Nanotoxicological and teratogenic effects: a linkage between dendrimer surface charge and zebrafish developmental stages. Toxicol Appl Pharmacol 337:1–11. https://doi.org/10.1016/j.taap.2017.10.003 Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol 94(4):320–327. https://doi.org/10.1016/j.aquatox.2009.07.019 Chang Y, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5(12):2850–2871. https://doi.org/10.3390/ma5122850 Chen Q, Hu X, Wang R, Yuan J, Yin D (2016) Fullerene inhibits benzo (a) pyrene efflux from Cyprinus carpio hepatocytes by affecting cell membrane fluidity and P glycoprotein expression. Aquat Toxicol 174:36–45. https://doi.org/10.1016/j.aquatox.2016.02.008 Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100(2):151–159. https://doi.org/10.1016/j.aquatox.2009.12.012 Ciji PP, Bijoy Nandan P (2014) Toxicity of copper and zinc to Puntius parrah (day, 1865). Mar Environ Res 93:38–46. https://doi.org/10.1016/j.marenvres.2013.11.006 Cowart DA, Guida SM, Shah SI, Marsh AG (2011) Effects on Ag nanoparticles on survival and oxygen consumption of zebrafish embryos, Danio rerio. J Environ Sci Health A 46(10):1122–1128. https://doi.org/10.1080/10934529.2011.590726 Dalai S, Iswarya V, Bhuvaneshwari M, Pakrashi S, Chandrasekaran N, Mukherjee A (2014) Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation. Aquat Toxicol 152:139–146. https://doi.org/10.1016/j.aquatox.2014.04.002 Devasagayam TPA, Tarachand U (1987) Decreased lipid peroxidation in the rat kidney during gestation. Biochem Biophy Res Commun 145(1):134–138. https://doi.org/10.1016/0006-291X(87)91297-6 Devi GP, Ahmed KBA, Varsha MKNS, Shrijhaa BS, Lal KKS, Anbazhagan V, Thiagarajan R (2015) Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquat Toxicol 158:149–156. https://doi.org/10.1016/j.aquatox.2014.11.007 Diniz MS, Alves de Matos AP, Lourenço J, Castro L, Peres I, Mendonça E, Picado A (2013) Liver alterations in two freshwater fish species (Carassius auratus and Danio rerio) following exposure to two different TiO2 nanoparticle concentrations. Microsc Microanal 19(05):1131–1140. https://doi.org/10.1017/S1431927613013238 Dutta HM, Adhikari S, Singh NK, Roy PK, Munshi JS (1993) Histopathological changes induced by malathion in the liver of a freshwater catfish, Heteropneustes fossilis (Bloch). Bull Environ Contam Toxicol 51(6):895–900 Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Oczkowsk M, Krawczynska A, Chwastowska J, Sadowska-Bratek M, Chajduk E, Wojewódzka M, Dušinská M, Kruszewski M (2011) Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J Appl Toxicol 32:920–928 Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531. https://doi.org/10.1016/j.envint.2010.10.012 Farmen E, Mikkelsen HN, Evensen O, Einset J, Heier LS, Rosseland BO, Salbu B, Tollefsen KE, Oughton DH (2012) Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg/L concentrations of Ag nanoparticles. Aquat Toxicol 108:78–84. https://doi.org/10.1016/j.aquatox.2011.07.007 Feng M, He Q, Meng L, Zhang X, Sun P, Wang Z (2015) Evaluation of single and joint toxicity of perfluorooctane sulfonate, perfluorooctanoic acid, and copper to Carassius auratus using oxidative stress biomarkers. Aquat Toxicol 161:108–116. https://doi.org/10.1016/j.aquatox.2015.01.025 Finney DJ (1978) Statistical method in biological assay, 3rd edn. Charles Griffin, London Gagne F, Auclair J, Turcotte P, Gagnon C (2013) Sublethal effects of silver nanoparticles and dissolved silver in fresh water mussels. J Toxicol Environ Health A 76(8):479–490. https://doi.org/10.1080/15287394.2013.779561 Giao NT, Limpiyakorn T, Kunapongkiti P, Thuptimdang P, Ratpukdi SS (2017) Influence of silver nanoparticles and liberated silver ions on nitrifying sludge: ammonia oxidation inhibitory kinetics and mechanism. Environ Sci Pollut Res 24(10):9229–9240. https://doi.org/10.1007/s11356-017-8561-0 Gingerich WH (1982) Hepatic toxicology of fishes. In: Weber LJ (ed) Aquatic toxicology. Raven Press, New York, pp 55–105 Gottschalk F, Sonderer T, Scholz RW, Nowack B (2008) Modelled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, and fullerenes) for different regions. Environ Sci Technol 43:9216–9222 Govindasamy R, Rahuman AA (2012) Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus). J Environ Sci 24(6):1091–1098. https://doi.org/10.1016/S1001-0742(11)60845-0 Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber SD (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41(23):8178–8186. https://doi.org/10.1021/es071235e Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001 Hao L, Wang Z, Xing B (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). J Environ Sci 21(10):1459–1466. https://doi.org/10.1016/S1001-0742(08)62440-7 Hao L, Chen L, Hao J, Zhong N (2013) Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio), a comparative study with its bulk counterparts. Ecotoxicol Environ Saf 91:52–60. https://doi.org/10.1016/j.ecoenv.2013.01.007 Hedayathi A, Kolangi H, Jahanbakhshi A, Shalu EIF (2012) Evaluation of silver nanoparticles. Ecotoxicity in silver carp (Hypophthalmicthys molitrix) and goldfish (Carassius auratus). Bulgarian J Vet Med 15:172–177 Hinton DE, Baumann PC, Gardner GC, Hawkins WE, Hendricks JD, Murchelano RA, Okihiro MS (1992) Histopathological biomarkers. Biomarkers: biochemical, physiological and histological markers of anthropogenic stress. Lewis Publishers, Chelsea, pp 155–210 Hogstrand C, Wood C (1998) Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: implications of water quality criteria. Environ Toxicol Chem 17(4):547–561. https://doi.org/10.1002/etc.5620170405 Hoseini SM, Hedayati A, Mirghaed AT, Ghelichpour M (2016) Toxic effects of copper sulfate and copper nanoparticles on mineral, enzymes, thyroid hormones and protein fractions of plasma and histopathology in common carp Cyprinus carpio. Exp Toxicol Pathol 68(9):493–503. https://doi.org/10.1016/j.etp.2016.08.002 Humason GL (1979) Animal tissue techniques, 4th edn. WH Freeman & CO, San Francisco Iavicoli I, Leso V, Schulte PA (2016) Biomarkers of susceptibility: state of the art and implications for occupational exposure to engineered nanomaterials. Toxicol Appl Pharmacol 299:112–124. https://doi.org/10.1016/j.taap.2015.12.018 Isani G, Falcioni ML, Barucca G, Sekar D, Andreani G, Carpene E, Falcioni G (2013) Comparative toxicity of CuO nanoparticles and CuSO4 in rainbow trout. Ecotoxicol Environ Saf 97:40–46. https://doi.org/10.1016/j.ecoenv.2013.07.001 Jang MH, Kim WK, Lee SK, Henry TB, Park JW (2014) Uptake, tissue distribution, and depuration of total silver in common carp (Cyprinus carpio) after aqueous exposure to silver nanoparticles. Environ Sci Technol 48(19):11568–11574. https://doi.org/10.1021/es5022813 Jonsson CM, Arana S, Ferracini VL, Queiroz SCN, Clemente Z, Vallim JH, de Holanda Nunes Maia A, Accaui Marcondes de Moura M (2017) Herbicide mixtures from usual practice in sugarcane crop: evaluation of oxidative stress and histopathological effects in the tropical fish Oreochromis niloticus. Water Air Soil Pollut 228(9):332. https://doi.org/10.1007/s11270-017-3506-2 Joo HS, Kalbassi MR, Yu IJ, Lee JH, Johar SA (2013) Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss), influence of concentration and salinity. Aquat Toxicol 140-141:398–406 Kathiravan V, Ravi S, Ashokkumar S (2014) Synthesis of silver nanoparticles from Melia dubia leaf extract and there in vitro anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 130:116–121. https://doi.org/10.1016/j.saa.2014.03.107 Kaya H, Akbulut M (2015) Effects of waterborne lead exposure in Mozambique tilapia, oxidative stress, osmoregulatory responses, and tissue accumulation. J Aquat Anim Health 27(2):77–87. https://doi.org/10.1080/08997659.2014.1001533 Krishnaraj C, Stacey L, Harper B, Soon Y (2016) In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult zebrafish (Danio rerio). J Hazard Mater 301:480–491. https://doi.org/10.1016/j.jhazmat.2015.09.022 Kwok KWH, Auffan M, Badireddy AR, Nelson CM, Wiesner MR, Chilkoti A, Liu J, Marinakos SM, Hinton DE (2012) Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials. Aquat Toxicol 120-121:59–66. https://doi.org/10.1016/j.aquatox.2012.04.012 Lee B, Duong C, Cho J, Lee J, Kim K, Seo Y, Kim P, Choi K, Yoon J (2012) Toxicity of citrate-capped silver nanoparticles in common carp (Cyprinus carpio). J Biomed Biotechnol 2012:262670 Lewis SV (1979) The scanning electron microscope study of the gills of the air-breathing catfish, Clarias batrachus. J Fish Biol 15(4):381–384. https://doi.org/10.1111/j.1095-8649.1979.tb03620.x Li XB, Hou XL, Mao Q, Zhao YL, Cheng YX, Wang Q (2009) Toxic effects of copper on antioxidative and metabolic enzymes of the marine gastropod Onchidium struma. Arch Environ Contam Toxicol 56(4):776–784. https://doi.org/10.1007/s00244-009-9290-2 Lima AR, Curtis C, Hammermeister DE, Call DJ, Felhaber TA (1982) Acute toxicity of silver to selected fish and invertebrates. Bull Environ Contam Toxicol 29(2):184–189. https://doi.org/10.1007/BF01606148 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275 Lushchak VI (2011) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol C Toxicol Pharmacol 153(2):175–190. https://doi.org/10.1016/j.cbpc.2010.10.004 Marklund S, Marklund G (1974) Involvement of superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x Masouleh FF, Amiri BM, Mirvaghefi A, Ghafoori H, Madsen SS (2017) Silver nanoparticles cause osmoregulatory impairment and oxidative stress in Caspian kutum (Rutilus kutum, Kamensky 1901). Environ Monit Assess 189(9):448. https://doi.org/10.1007/s10661-017-6156-3 Mohan Kumar K, Sinha M, Mandal BK, Ghosh AR, Siva Kumar K, Reddy PS (2012) Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Spectrochim Acta A Mol Biomol Spectrosc 91:228–233. https://doi.org/10.1016/j.saa.2012.02.001 Mohapatra B, Kuriakose S, Mohapatra S (2015) Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract. J Alloys Compd 637:119–126. https://doi.org/10.1016/j.jallcom.2015.02.206 Mueller NC, Nowack B (2008) Exposure modelling of engineered nanoparticles in the environment. J Environ Sci Technol 42(12):4447–4453. https://doi.org/10.1021/es7029637 Nasrollahzadeh M, Sajadi SM, Babaei F, Maham M (2015) Euphorbia helioscopia Linn as a green source for the synthesis of silver nanoparticles and their optical and catalytic properties. J Colloid Int Sci 450:374–380. https://doi.org/10.1016/j.jcis.2015.03.033 Ostaszewska T, Śliwiński J, Kamaszewski M, Sysa P, Chojnacki M (2017) Cytotoxicity of silver and copper nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Environ Sci Pollut Res 25(1):908–915. https://doi.org/10.1007/s11356-017-0494-0 Park SJ, Lee SW, Lee KJ, Lee JH, Kim KD, Jeong JH, Choi JH (2010) An antireflective nanostructure array fabricated by nanosilver colloidal lithography on a silicon substrate. Nanoscale Res Lett 5(10):1570–1577. https://doi.org/10.1007/s11671-010-9678-y Pearse AGE (1968) Histochemistry. Theoretical and applied, 2nd edn. Little Brown and Company, Boston Philip D, Unni C, Aromal S, Vidhu VK (2011) Murraya koenigii leaf-assisted rapid green synthesis of gold and silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 78(2):899–904. https://doi.org/10.1016/j.saa.2010.12.060 Poopal RK, Ramesh M, Maruthappan V, Babu Rajendran R (2017) Potential effects of low molecular weight phthalate esters (C16H22O4 and C12H14O4) on the freshwater fish Cyprinus carpio. Toxicol Res 6(4):505–520. https://doi.org/10.1039/C7TX00084G Praveen Kumar K, Paul W, Sharma CP (2012) Green synthesis of silver nanoparticles with Zingiber officinale extract and study of its blood compatibility. Bio Nano Sci 2:144–152 Regoli F, Hummel H, Amiard-Triquet C, Larroux C, Sukhotin A (1998) Trace metals and variations of antioxidant enzymes in Arctic bivalve populations. Arch Environ Contam Toxicol 35(4):594–601. https://doi.org/10.1007/s002449900421 Roberts RJ (1978) The anatomy and physiology of teleosts. In: Roberts RJ (ed) Fish pathology. Bailliere Tindall, London, pp 13–103 Ruas CB, Carvalho Cdos S, de Araujo HS, Espindola EL, Fernandes MN (2008) Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal contaminated river. Ecotoxicol Environ Saf 71(1):86–93. https://doi.org/10.1016/j.ecoenv.2007.08.018 Saratale RG, Saratale GD, Shin HS, Jacob JM, Pugazhendhi A, Bhaisare M, Kumar G (2017) New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-9912-6 Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, Fernandes TF, Jepson M, van Aerle R, Tyler CR (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115(2):521–534. https://doi.org/10.1093/toxsci/kfq076 Shanmugavani A, Selvan RK (2016) Microwave-assisted reflux synthesis of NiCo2O4/NiO composite: fabrication of high-performance asymmetric supercapacitor with Fe2O3. Electrochim Acta 189:283–294. https://doi.org/10.1016/j.electacta.2015.12.043 Shaw BJ, Handy RD (2011) Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37(6):1083–1097. https://doi.org/10.1016/j.envint.2011.03.009 Song L, Vijver MG, Peijnenburg WJ, Galloway TS, Tyler CR (2015) A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere 139:181–189. https://doi.org/10.1016/j.chemosphere.2015.06.021 Taju G, Abdul Majeed S, Nambi KSN, Sahul Hameed AS (2014) In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita. Comp Biochem Physiol C Toxicol Pharmacol 161:41–52. https://doi.org/10.1016/j.cbpc.2014.01.007 Torres MA, Testa CP, Gaspari C, Masutti MB, Panitz CMN, Curi-Pedrosa R, de Almeida EA, Di Mascio P, Filho DW (2002) Oxidative stress in the mussel Mytella guyanensis from polluted mangroves on Santa Catarina Island, Brazil. Mar Pollut Bull 44(9):923–932. https://doi.org/10.1016/S0025-326X(02)00142-X UshaRani P, Rajasekharreddy P (2011) Green synthesis of silver-protein (core-shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna. Colloids Surf A Physicochem Eng Asp 389(1-3):188–194. https://doi.org/10.1016/j.colsurfa.2011.08.028 Vijayarahavan K, Kamala Nalini SP, Udaya Prakash N, Madhankumar D (2012) One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids Surf B Biointerfaces 94:114–117. https://doi.org/10.1016/j.colsurfb.2012.01.026 Vutukuru SS, Chintada S, Madhavi KR, Rao JV, Anjaneyulu Y (2006) Acute effects of copper on superoxide dismutase, catalase and lipid peroxidation in the freshwater teleost fish, Esomus danricus. Fish Physiol Biochem 32(3):221–229. https://doi.org/10.1007/s10695-006-9004-x Wang Z, Xia T, Liu S (2015) Mechanisms of nanosilver-induced toxicological effects, more attention should be paid to its sublethal effects. Nanoscale 7:7470–7481 Wood CM (2011) Silver. In: Wood CM, Farrell AP, Brauner CJ (eds) Homeostasis and toxicology of non-essential metals, fish physiology, vol 31 B. Academic Press/Elsevier, New York, pp 1–65 Wu Y, Zhou Q (2013) Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environ Toxicol Chem 32(1):165–173. https://doi.org/10.1002/etc.2038 Wu Y, Zhou Q, Li H, Liu W, Wang T, Jiang G (2010) Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat Toxicol 100(2):160–167. https://doi.org/10.1016/j.aquatox.2009.11.014 Xu L, Xua QH, Zhoua XY, Yinc LY, Guand PP, Zhanga T, Liu JX (2017) Mechanisms of silver-nanoparticles induced hypopigmentation in embryonic zebrafish. Aquat Toxicol 184:49–60. https://doi.org/10.1016/j.aquatox.2017.01.002 Zhao J, Wang ZY, Liu XY, Xie XY, Zhang K, Xing BS (2011) Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. J Hazard Mater 197:304–310. https://doi.org/10.1016/j.jhazmat.2011.09.094