Cách tổng hợp xanh nanocomposite chitosan dựa trên vàng và bạc và ứng dụng của chúng trong việc nhận diện chọn lọc ciprofloxacin

Shahjadi Khatoon1, Divya2, Nazia Tarannum2
1Shri Venkateshwara University, Gajraula, Amroha, India
2Department of Chemistry, Chaudhary Charan Singh University, Meerut, India

Tóm tắt

Trong bài báo này, chúng tôi trình bày một nghiên cứu về phim polymer in dấu phân tử (MIP) dựa trên hạt nano vàng (AuNPs) và bạc (AgNPs) hợp nhất với chitosan và ứng dụng của nó để nhận diện/loại bỏ kháng sinh ciprofloxacin (CIP) trong các mẫu thực tế. Vỏ quả lựu được sử dụng ở pH 8 để khử dung dịch nitrat bạc tạo thành AgNPs, trong khi chitosan được sử dụng để khử dung dịch chloride vàng tạo thành AuNPs. Kích thước của AgNPs và AuNPs tổng hợp nằm trong khoảng 30–45 và 45–50 nm, tương ứng, được xác định bằng phương pháp tán xạ ánh sáng động (DLS). Hơn nữa, các hạt nano (NPs) tổng hợp được sử dụng để chuẩn bị phim MIP. Nanocomposite chitosan được thiết kế phân tử dùng làm polymer sinh học chức năng nhằm nâng cao khả năng hấp thụ và diện tích bề mặt của phim MIP. Các đặc tính của composite (Chi@AuMIP và Chi@AgMIP) dựa trên AuNPs và AgNPs chitosan tổng hợp cho thấy khả năng hấp thụ cao hơn nhiều so với polymer không in dấu (NIP). Kết quả cho thấy hằng số cân bằng lý thuyết (KL) và khả năng hấp thụ tối đa (Qmax) theo mô hình Langmuir lần lượt là 12,2 và 20,48 mg g−1 cho Chi@AuMIP và 18,31 và 34,13 mg g−1 cho Chi@AgMIP. Tỷ lệ thu hồi của CIP cho Chi@AuMIP và Chi@AgMIP lần lượt là 98% và 80%. Dữ liệu từ thí nghiệm chọn lọc cho thấy khả năng hấp thụ tối đa của phân tử mục tiêu (CIP) bởi MIP so với các đồng dạng của phân tử mẫu. MIP cho thấy tính chọn lọc tương đối cao và tỷ lệ thu hồi tốt cho CIP trong các mẫu thực tế.

Từ khóa

#chitosan #hạt nano vàng #hạt nano bạc #phim polymer in dấu phân tử #ciprofloxacin

Tài liệu tham khảo

Vidyavathi M, Srividya G (2018) A review on ciprofloxacin: dosage form perspective. Int J Appl Pharm 10(4):6–10 Rahman MS, Hassan MM, Chowdhury S (2021) Determination of antibiotic residues in milk and assessment of human health risk in Bangladesh. Heliyon 7(8):e07739 Garces A, Zerzanova A, Kucera R, Barron D, Barbosa J (2006) Determination of a series of quinolones in pig plasma using solid-phase extraction and liquid chromatography coupled with mass spectrometric detection—application to pharmacokinetic studies. J Chromatogr A 1137(1):22–29 Liu ST, Yan HY, Wang MY, Wang LH (2013) Water-compatible molecularly imprinted microspheres in pipette tip solid-phase extraction for simultaneous determination of five fluoroquinolones in eggs. J Agric Food Chem 61:11974–11980 Li S, Zhang X, Huang Y (2017) Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. J Hazard Mater 321:711–719 Pawar MK, Tayade KC, Sahoo SK, Mahulikar PP, Kuwar AS, Chaudhari BL (2016) Selective ciprofloxacin antibiotic detection by fluorescent siderophore pyoverdin. Biosens Bioelectron 81:274–279 Doorslaer XV, Dewulf J, Langenhove HV, Demeestere K (2014) Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci Total Environ 500–501:250–269 Banin E, Hughes D, Kuipers OP (2017) Editorial: bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microb Rev 41(3):450–452 Duran N, Duran M, Jesus MB, Seabra AB, Favaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed Nanotechnol Biol Med 12(3):789–799 Wise R, Andrews JM, Edwards L (1983) In vitro activity of Bay 09867, a new quinoline derivative, compared with those of other antimicrobial agents. Antimicrob Agents Chemother 23:559–564 Sajini T, Mathew B (2021) A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. Talanta Open 4:100072 Beltran A, Borrull F, Marce RM, Cormack PAG (2010) Molecularly-imprinted polymers: useful sorbents for selective extractions. Trends Anal Chem 29(11):1363–1375 Turiel E, Martin-Esteban A (2010) Molecularly imprinted polymers for sample preparation: a review. Chim Acta 668:87–99 Chao MR, Hu CW, Chen JL (2016) Fluorometric determination of copper(II) using CdTe quantum dots coated with 1-(2-thiazolylazo)-2-naphthol and an ionic liquid. Anal Chim Acta 925:61–69 Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179 Bois L, Chassagneux F, Desroches C, Battie Y, Destouches N, Gilon N, Parola S, Stephan O (2010) Chemical growth and photochromism of silver nanoparticles into a mesoporous Titania template. Langmuir 26:8729–8736 Upadhyayula VKK (2012) Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 715:1–18 Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775 Okan M, Sari E, Duman M (2017) Molecularly imprinted polymer based micromechanical cantilever sensor system for the selective determination of ciprofloxacin. Biosens Bioelectron 88:258–264 Wu C, Cheng R, Wang J, Wang Y, Jing X, Chen R, Sun L, Yan Y (2018) Fluorescent molecularly imprinted nanoparticles for selective and rapid detection of ciprofloxacin in aquaculture water. J Sep Sci 41(19):3782–3790 Liu X, Wang T, Lu Y, Wang W, Zhou Z, Yan Y (2019) Constructing carbon dots and CdTe quantum dots multi-functional composites for ultrasensitive sensing and rapid degrading ciprofloxacin. Sens Actuators B Chem 289:242–251 Tarannum N, Hendrickson OD, Khatoon S, Zherdev AV, Dzantiev BB (2020) Molecularly imprinted polymers as receptors for assays of antibiotics. Crit Rev Anal Chem 50(4):291–310 Bazi M, Balara D, Khatibi AD, Siddiqui SH, Mostafapour FK (2021) Investigation of isotherm, kinetics and thermodynamics of ciprofloxacin adsorption by molecularly imprinted polymer from aqueous solutions. Int J Pharm Investig 11:269–273 Tarannum N, Khan R, Singh P (2018) Preparation and applications of modified chitosan based carbobetaine gel system for treatment of acephate contaminated water. Asian J Chem 31(1):121–127 Saad PG, Castelinol RD, Ravi V, Al-Amri IS, Khan SA (2021) Green synthesis of silver nanoparticles using Omani pomegranate peel extract and two polyphenolic natural products: characterization and comparison of their antioxidant, antibacterial, and cytotoxic activities. Beni-Suef Univ J Basic Appl Sci 10(1):29 Elgorban AM, Al-Rahmah AN, Sayed SR, Hirad A, Mostafa AA, Bahkali AH (2016) Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnol Equip 30(2):299–304 Surya S, Khatoon S, Ait Lahcen A, Nguyen ATH, Dzantiev BB, Tarannum N, Salama KN (2020) A chitosan gold nanoparticles molecularly imprinted polymer based ciprofloxacin sensor. RSC Adv 10(22):12823–12832 Regiel-Futyra A, Kus-Liskiewicz M, Sebastian V, Irusta S, Arruebo M, Stochel G, Kyziol A (2015) Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. ACS Appl Mater Interfaces 7:1087–1099 Wang J, Sang Y, Liu W, Liang N, Wang Xi (2017) The development of a biomimetic enzyme-linked immunosorbent assay based on the molecular imprinting technique for the detection of enrofloxacin in animal-based food. Anal Methods 9(47):6682–6688 Wang Y, Wang E, Dong H, Liu F, Wu ZM, Li HA, Wang Y (2014) Synthesis of chitosan-based molecularly imprinted polymers for pre-concentration and clean-up of chloramphenicol. Adsorp Sci Technol 32(4):321–330 Yang S, Wang Y, Xu M, He M, Zhang M, Ran D, Jia X (2013) Synthesis of modified chitosan-based molecularly imprinted polymers for adsorptive protein separation. Anal Methods 5(20):5471–5477 Kaushik A, Solanki PR, Ansari AA, Ahmad S, Malhotra BD (2008) Chitosan–iron oxide nanobiocomposite based immunosensor for ochratoxin-A. Electrochem Commun 10:1364–1368 Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3(1):37–46 Gupta R, Mitchell D, Blanche J, Harper S, Tang W, Pancholi K, Baines L, Bucknall DG (2021) A review of sensing technologies for non-destructive evaluation of structural composite materials. J Compos Sci 5:319 Wan J, Ai J, Zhang Y, Geng X, Gao Q, Cheng Z (2016) Signal-off impedimetric immunosensor for the detection of Escherichia coli O157:H7. Sci Rep 6(1):19806 Yasmeen S, Kabiraz M, Saha B, Qadir M, Gafur M, Masum S (2016) Chromium (VI) ions removal from tannery effluent using chitosan-microcrystalline cellulose composite as adsorbent. Int Res J Pure Appl Chem 10(4):1–14 Pati SS, Singh LH, Guimaraes EM, Mantilla J, Coaquira JAH, Oliveira AC, Sharma VK, Garg VK (2016) Magnetic chitosan-functionalized Fe3O4@Au nanoparticles: synthesis and characterization. J Alloys Compd 684:68–74 Zhu GF, Fan J, Gao YB, Gao X, Wang JJ (2011) Synthesis of surface molecularly imprinted polymer and the selective solid phase extraction of imidazole from its structural analogs. Talanta 84:1124–1132 Caputo F, Clogston J, Calzolai L, Rosslein M, Prina-Mello A (2019) Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J Control Release 299:31–43 Al-Huqail AA, Hatata MM, AL-Huqail AA, Ibrahim MM (2018) Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi J Biol Sci 25(2):313–319 Rautela A, Rani J, Debnath DMJ (2019) Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. Anal Sci Technol 10(1):5 Abazari M, Badeleh SM, Khaleghi F, Saeedi M, Haghi F (2023) Fabrication of silver nanoparticles‑deposited fabrics as a potential candidate for the development of reusable facemasks and evaluation of their performance. Sci Rep 13(1) Wang H, Qiao X, Chen J, Ding S (2005) Preparation of silver nanoparticles by chemical reduction method. Colloids Surf A Physicochem Eng 256(2–3):111–115 Ayub A, Raza ZA (2021) Arsenic removal approaches: a focus on chitosan biosorption to conserve the water sources. Int J Biol Macromol 192:1196–1216