Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Michna, A., Morga, M., Adamczyk, Z., Kubiak, K.: Monolayers of silver nanoparticles obtained by green synthesis on macroion modified substrates. Mater. Chem. Phys. 227, 224–235 (2019)
Fang, X., Wang, Y., Wang, Z., Jiang, Z., Dong, M.: Microorganism assisted synthesized nanoparticles for catalytic applications, review. Energies 12, 190 (2019)
Kumar, V.G.V., Prem, A.A.: Green synthesis and characterization of iron oxide nanoparticles using Phyllanthus niruri extract. Orient. J. Chem. 34, 2583–2589 (2018)
Deraz, N.M., Abd-Elkader, O.H.: Investigation of magnesium ferrite spinel solid solution with iron-rich composition. Int. J. Electrochem. Sci. 8, 9071–9081 (2013)
Zolghadr, S., Khojier, K., Kimiagar, S.: Ammonia sensing properties of α-Fe2O3 thin films during post annealing process. Procedia Mater. Sci. 11, 469–473 (2015)
Campos, E.A., Pinto, D.V.B.S., Oliveira, J.I.S., Mattos, E.C., Dutra, R.C.L.: Synthesis, characterization and applications of iron oxide nanoparticles—a short review. J. Aerosp. Technol. Manag. 7, 267–276 (2015)
Prasad, C., Tang, H., Liu, W.: Magnetic Fe3O4 based layered double hydroxides (LDHs) nanocomposites (Fe3O4/LDHs): recent review of progress in synthesis, properties and applications. J. Nanostructure Chem. 8, 393–412 (2018)
Samrot, A.V., Rashmitha, S., Veera, P., Sahithya, C.S.: Azadirachta indica influenced biosynthesis of super-paramagnetic iron-oxide nanoparticles and their applications in tannery water treatment and X-ray imaging. J. Nanostructure Chem. 8, 343–351 (2018)
Liu, Y., Yu, L., Hu, Y., Guo, C., Zhang, F., Lou, X.W.: A magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale 4, 183–187 (2012)
Lohrasbi, S., Jadidi Kouhbanani, M.A., Beheshtkhoo, N., Ghasemi, Y., Amani, A.M., Taghizadeh, S.: Green synthesis of iron nanoparticles using Plantago major leaf extract and their application as a catalyst for the decolonization of azo dye. BioNanoScienc 9, 317–322 (2019)
Desalegn, B., Megharaj, M., Zuliang Chen, Z., Naidu, R.: Green synthesis of zero valent iron nanoparticle using mango peel extract and surface characterization using XPS and GC-MS. Heliyon 5, 1–9 (2019)
Rostamizadeh, E., Iranbakhsh, A., Majd, A., Arbabian, S., Mehragan, I.: Green synthesis of Fe2O3 nanoparticles using fruit extract of Cornus mas L. and its growth-promoting roles in barley. J. Nanostruct. Chem. 2, 422–427 (2020)
Markova, Z., Novak, P., Kaslik, J., Plachtova, P., Brazdova, M., Jancula, D., Siskova, K.M., Machala, L., Marsalek, B., Zboril, R.: Iron (II, III)-Polyphenol complex nanoparticles derived from green tea with remarkable eco toxicological impact. ACS Sustain. Chem. Engin. 2, 1674–1680 (2014)
Nadagouda, M.N., Castle, A.B., Murdock, R.C., Hussain, S.M., Varma, R.S.: In vitro biocompatibility of nanoscale zero-valent iron particles (NZVI) synthesized using tea polyphenols. Green Chem. 12, 114–122 (2010)
Ahmmad, B., Leonard, K., Shariful Islam, M., Kurawaki, J., Muruganandham, M., Ohkubo, T., Kuroda, Y.: Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity. Adv. Powder Technol. 24, 160–167 (2013)
Prasad, A.S.: Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of Garlic Vine (Mansoa alliacea). Mat. Sci. Semicon. Proc. 53, 79–83 (2016)
Phumying, S., Labuayai, S., Thomas, C., Amornkitbamrung, V., Swatsitang, E., Maensiri, S.: Aloe Vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Appl. Phys. A. 111, 1187–1193 (2012)
Wang, Z., Fang, C., Megharaj, M.: Characterization of iron-polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustain. Chem. Eng. 2, 1022–1025 (2014)
Rao, A., Bankar, A., Kumar, A.R., Gosavi, S., Zinjarde, S.: Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. J. Contam. Hydrol. 146, 63–73 (2013)
Venkateswarlu, S., Rao, Y.S., Balaji, T., Prathima, B., Jyothi, N.V.: Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Mat. Lett. 100, 241–244 (2013)
Senthil, M., Ramesh, C.: Biogenic synthesis of Fe3O4 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Dig. J. Nanomater. Bios. 7, 1655–1660 (2012)
Ouchikh, O., Chahed, T., Ksouri, R., Taarit, M.B., Faleh, H., Abdelly, C., Kchouk, M.E., Marzouk, B.: The effects of extraction method on the measured tocopherol level and antioxidant activity of L. nobilis vegetative organs. J. Food Compos. Anal. 24, 103–110 (2011)
Fidan, H., Stefanova, G., Kostova, I., Stankov, S., Damyanova, S., Stoyanova, A., Zheljazkov, V.D.: Chemical composition and antimicrobial activity of Laurus nobilis L. essential oils from Bulgaria. Molecules 24, 804 (2019)
Conforti, F., Statti, G., Uzunov, D., Menichinia, F.: Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. piperitum (Ucria) coutinho seeds. Biol. Pharm. Bull. 29, 2056–2064 (2006)
Fernandez-Andrade, C., Da Rosa, M., Boufleuer, E., Ferreira, F., Iwanaga, C., Gonçalves, J., Cortez, D., Martins, C., Linde, G., Simões, M.: Chemical composition and antifungal activity of essential oil and fractions extracted from the leaves of Laurus nobilis L. cultivated in southern Brazil. J. Med. Plants Res. 48, 865–871 (2016)
Speroni, E., Cervellati, R., Dall'Acqua, S., Guerra, M.C., Greco, E., Govoni, P., Innocenti, G.: Gastro protective effect and antioxidant properties of different Laurus nobilis L. leaf extracts. J. Med. Food 14, 499–504 (2011)
Caputo, L., Nazzaro, F., Souza, L.F., Aliberti, L., De Martino, L., Fratianni, F., Coppola, R., De Feo, V.: Laurus nobilis: composition of essential oil and its biological activities. Molecules 22, 930–941 (2017)
Kamari M., Jamzad, M., Naderi, F.: Green synthesis of iron oxide nanoparticles by Laurus nobilis L. aqueous extract. Poster session presented at: The 25th Iranian Seminar of Organic Chemistry, Tehran, 2–4 Sept 2017.
Bauer, A.W., Kirby, W.M.M., Sherris, J.C., Truch, M.: Antibiotic susceptibility testing by standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1996)
Klacanova, K., Fodran, P., Simon, P., Rapta, P., Boca, R., Jorik, V., Miglierini, M., Kolek, E., Kaplovik, L.: Formation of Fe (0)-Nanoparticles via reduction of Fe (II) compounds by amino acids and their subsequent oxidation to Iron Oxides. J. Chem. 2013, 1–10 (2013)
Kanagasubbulakshmi, S., Kadirvelu, K.: Green synthesis of Iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def. Life Sci. J. 2, 422–427 (2017)
Rajendran, K., Karunagaran, V., Mahanty, B., Sen, S.: Biosynthesis of hematite nanoparticles and its cytotoxic effect on HepG2 cancer cells. Int. J. Biol. Macromol. 74, 376–381 (2015)
Ilmetov, R.: Photocatalytic activity of hematite nanoparticles prepared by sol-gel method. Mater. Today: Proc. 6, 11–14 (2019)
Joshi, D.P., Pant, G., Arora, N., Nainwal, S.: Effect of solvents on morphology, magnetic and dielectric properties of (α-Fe2O3@SiO2) core-shell nanoparticles. Heliyon 3, 1–16 (2017)
Abusalem, M., Awwad, A., Ayad, J., Abu Rayyan, A.: Green synthesis of α-Fe2O3 nanoparticles using pistachio leaf extract influenced seed germination and seedling growth of tomatoes. JJEES 10, 161–166 (2019)
Peng, D., Beysen, S., Li, Q., Yang, L.: Hydrothermal synthesis of monodisperse α-Fe2O3 hexagonal platelets. Particuology 8, 386–389 (2010)
Ocwieja, M., Adamczyk, Z., Morga, M., Bielanska, E., Wegrzynowicz, A.: Hematite nanoparticle monolayers on mica preparation by controlled self-assembly. J. Colloid Interf. Sci. 386, 51–59 (2012)
Asoufi, H.M., Al-Antary, T.M., Awwad, A.M.: Green route for synthesis hematite (α-Fe2O3) nanoparticles: Toxicity effect on the green peach aphid, Myzus persicae (Sulzer). Environ. Nanotechnol. Monit. Manag. 9, 107–111 (2018)
Xu, C., Cheng, D., Gao, B., Yin, Z., Yue, Q.: Zhao X (2012) Preparation and characterization of β-FeOOH-coated sand and its adsorption of Cr(VI) from aqueous solutions. Front. Environ. Sci. Eng. 6, 455–462 (2012)
Singh, B.P., Sharma, N., Kumar, R., Kumar, A.: Simple hydrolysis synthesis of uniform rice-shaped β-FeOOH nanocrystals and their transformation to α-Fe2O3 microspheres. Indian J. Mater. Sci. 2015, 1–7 (2015)
Marslin, G., Siram, K., Maqbool, Q., Selvakesavan, R.K., Kruszka, D., Kachlicki, P., Franklin, G.: Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 11, 940 (2018)
Turakhia, B., Chikkala, S., Shah, S.: Novelty of bioengineered iron nanoparticles in nano coated surgical cotton: a green chemistry. Adv. Pharmacol. Sci. 2019, 1–10 (2019)
Tran, N., Mir, A., Mallik, D., Sinha, A., Nayar, S., Webster, T.J.: Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int. J. Nanomed. 5, 277–283 (2010)
Subbulakshmi, K., Kadirvelu, K.: Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def.Life Sci. J. 2, 422–427 (2017)
Mohamad Rafi, M., Zameer Ahmed, K.S., Prem Nazar, K., Siva Kumar, D., Thamilselvan, M.: Synthesis, characterization and magnetic properties of hematite (α-Fe2O3) nanoparticles on polysaccharide templates and their antibacterial activity. Appl. Nanosci. 5, 515–520 (2015)
Rufus, A., Sreeju, N., Philip, D.: Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Adv. 6, 94206–94217 (2016)
Hassan, D., Talha Khalil, A., Saleem, J., Diallo, A., Khamlich, S., Shinwari, Z.K., Malik Maaza, M.: Biosynthesis of pure hematite phase magnetic iron oxide nanoparticles using floral extracts of Callistemon viminalis (bottlebrush): their physical properties and novel biological applications. Artif. Cell Nanomed. B. 46, 693–707 (2018)
Taylor, E.N., Webster, T.J.: The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. Int. J. Nanomed. 4, 145–152 (2009)
Parveena, S., Wania, A.H., Shahb, M.A., Devib, H.S., Bhata, M.Y., Koka, J.A.: Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb. Pathog. 115, 287–292 (2018)
Bharde, A.A., Parikh, R.Y., Baidakova, M., Jouen, S., Hannoyer, B., Enoki, T., Prasad, B., Shouche, Y.S., Ogale, S., Sastry, M.: Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 24, 5787–5794 (2008)
Salgado, P., Márquez, K., Rubilar, O., Contreras, D., Vidal, G.: The effect of phenolic compounds on the green synthesis of iron nanoparticles (FexOy-NPs) with photocatalytic activity. Appl. Nanosci. 9, 371–385 (2019)
Luo, F., Chen, Z., Megharaj, M., Naidu, R.: Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles. RSC Adv. 4, 53467–53474 (2014)
Khalil, M.M.H., Mahmoud, I.I., Hamed, M.O.A.: Green synthesis of gold nanoparticles using Laurus nobilis L. leaf extract and its antimicrobial activity. IJGHC 4, 265–279 (2015)
Kashkouli, S., Jamzad, M., Nouri, A.: Total phenolic and flavonoids contents, radical scavenging activity and green synthesis of silver nanoparticles by Laurus nobilis L. leaves aqueous extract. JMPB 1, 25–32 (2018)
Al-Ghamdi, A.Y.: Antimicrobial and catalytic activities of green synthesized silver nanoparticles using bay laurel (Laurus nobilis) leaves extract. J. Biomater. Nanobiotech. 10, 26–39 (2019)