Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rui, 2010, Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles, Adv. Mater., 22, 2729, 10.1002/adma.201000260
Kaviyarasu, 2016, Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials, Ceram. Int., 42, 8385, 10.1016/j.ceramint.2016.02.054
Kaviyarasu, 2014, One dimensional well-aligned CdO nanocrystals by solvothermal method, J. Alloys Compd., 593, 67, 10.1016/j.jallcom.2014.01.071
Kaviyarasu, 2014, Quantum confinement and photoluminescence of well-aligned CdO nanofibers by a solvothermal route, Mater. Lett., 120, 243, 10.1016/j.matlet.2014.01.048
Kaviyarasu, 2013, A convenient route to synthesize hexagonal pillar shaped ZnO nanoneedles via CTAB surfactant, Adv. Mater. Lett., 4, 582, 10.5185/amlett.2012.10443
Lokesh, 2016, Effective ammonia detection using n-ZnO/p-NiO heterostructured nanofibers, IEEE Sensors J., 16, 2477, 10.1109/JSEN.2016.2517085
Manikandan, 2015, Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications, J. Alloys Compd., 647, 141, 10.1016/j.jallcom.2015.06.102
Magdalane, 2016, Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: investigation of optical and antimicrobial activity, J. Photochem. Photobiol. B Biol., 163, 77, 10.1016/j.jphotobiol.2016.08.013
Kaviyarasu, 2016, Solution processing of CuSe quantum dots: photocatalytic activity under RhB for UV and visible-light solar irradiation, Mater. Sci. Eng. B, 210, 1, 10.1016/j.mseb.2016.05.002
Kaviyarasu, 2011, A versatile route to synthesize MgO nanocrystals by combustion technique, Der Pharma Chemica, 3, 248
Brigger, 2002, Nanoparticles in cancer therapy and diagnosis, Adv. Drug Deliv. Rev., 54, 631, 10.1016/S0169-409X(02)00044-3
Kaviyarasu, 2013, Structural elucidation and spectral characterizations of Co3O4 nanoflakes, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 586, 10.1016/j.saa.2013.04.126
Fang, 2010, Modulation of field emission properties of ZnO nanorods during arc discharge, J. Nanosci. Nanotechnol., 10, 8239, 10.1166/jnn.2010.3009
Fang, 2009, UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method, Nanotechnology, 20, 245502, 10.1088/0957-4484/20/24/245502
Gupta, 2005, Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles, Biomaterials, 26, 1565, 10.1016/j.biomaterials.2004.05.022
Costa, 1984, Perspectives on the mechanism of nickel carcinogenesis, Adv. Inorg. Biochem., 6, 285
Heinlaan, 2008, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and Crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, 71, 1308, 10.1016/j.chemosphere.2007.11.047
Huh, 2011, Nanoantibiotics: a new paradigm for treating infectious diseases using nanoparticles in the antibiotics resistant era, J. Control. Release, 156, 128, 10.1016/j.jconrel.2011.07.002
Sasi, 2003, Preparation of transparent and semiconducting NiO films, Vacuum, 68, 149, 10.1016/S0042-207X(02)00299-3
Pandian, 2015, Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption, Chin. J. Chem. Eng., 23, 1307, 10.1016/j.cjche.2015.05.012
Sudhasree, 2014, Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity, Toxicol. Environ. Chem., 95, 743, 10.1080/02772248.2014.923148
Joerger, 2000, Biologically produced Ag-C composite for optically functional thin film coatings, Adv. Mater., 12, 407, 10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O
Kaviyarasu, 2013, A rapid and versatile method for solvothermal synthesis of Sb2O3 nanocrystals under mild conditions, Appl. Nanosci., 3, 529, 10.1007/s13204-012-0156-y
Gong, 2011, Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris, Chemosphere, 83, 510, 10.1016/j.chemosphere.2010.12.059
Abbracchio, 1982, Cytoplasmic dissolution of phagocytized crystalline nickel sulfide particles: a prerequisite for nuclear uptake of nickel, J. Toxicol. Environ. Health, 9, 663, 10.1080/15287398209530194
Li, 2006, Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation, Appl. Catal. A Gen., 301, 16, 10.1016/j.apcata.2005.11.013
Hosseini, 2012, Nanocrystalline AMn2O4 (A=Co, Ni, Cu) spinels for remediation of volatile organic compounds-synthesis, characterization and catalytic performance, Ceram. Int., 38, 1655, 10.1016/j.ceramint.2011.09.057
Kaviyarasu, 2013, Synthesis of Mg doped Tio2 nanocrystals prepared by wet-chemical method: optical and microscopic studies, Int. J. Nanosci., 12, 1350033, 10.1142/S0219581X13500336
Morales, 2008, Combustion synthesis and characterization of nanocrystalline WO3, J. Am. Chem. Soc., 130, 6318, 10.1021/ja8012402
Wu, 2010, Catalyzed degradation of azo dyes under ambient conditions, Environ. Sci. Technol., 44, 9123, 10.1021/es1027234
Deshpande, 2004, Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties, Chem. Mater., 16, 4896, 10.1021/cm040061m
Ingle, 2009, Novel biological agent for the extracellular synthesis of silver nanoparticles, J. Nanopart. Res., 11, 2079, 10.1007/s11051-008-9573-y
Lee, 2011, Biological synthesis of copper nanoparticles using plant extract, Nanotechnology, 1, 371
Govindaraju, 2010, Biogenic silver nanoparticles by Solanum torvum and their promising antibacterial activity, J. Biopest., 3, 394
Laokul, 2011, Growth of p-type ZnO thin film on n-type silicon substrate and its application, Curr. Appl. Phys., 11, 101, 10.1016/j.cap.2010.06.027
Kar, 2014, Synthesis of nano-spherical nickel by templating hibiscus flower petals, J. Nanosci. Nanotechnol., 2, 17, 10.11648/j.nano.20140202.11
Morton, 1991, The horseradish tree, Moringa pterygosperma (Moringaceae) a boon to arid lands?, Econ. Bot., 45, 318, 10.1007/BF02887070
Sutherland, 1994, Moringa oleifera as a natural coagulant, 297
Ndabigengesere, 1998, Quality of water treated by coagulation using Moringa oleifera seeds, Water Res., 32, 781, 10.1016/S0043-1354(97)00295-9
Fuglie, 1999
Hart, 2000
Verma, 2009, In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves, Food Chem. Toxicol., 47, 2196, 10.1016/j.fct.2009.06.005
Chuang, 2007, Antifungal activity of crude extracts and essential oil of Moringa oleifera Lam, Bioresour. Technol., 98, 232, 10.1016/j.biortech.2005.11.003
Kaviyarasu, 2012, One pot synthesis and characterization of cesium doped SnO2 nanocrystals via a hydrothermal process, J. Mater. Sci. Technol., 28, 15, 10.1016/S1005-0302(12)60017-6
Mahajan, 2008, Effect of Moringa oleifera Lam. seed extract on oval bumin-induced airway inflammation in guinea pigs, Inhal. Toxicol., 20, 897, 10.1080/08958370802027443
Mariam, 2014, Bio-synthesis of NiO and Ni nanoparticles and their characterization, Dig. J. Nanomater. Bios., 9, 1007
Chen, 2013, Evaluation of the antitumor activity by Ni nanoparticles with verbascoside, J. Nanomater., 2013, 1
Wang, 2008, Comparison of basic dye crystal violet removal from aqueous solution by low-cost biosorbents, Sep. Sci. Technol., 43, 3712, 10.1080/01496390802222640
Murmu, 2011, Structural and photoluminescence properties of Gd implanted ZnO single crystals, J. Appl. Phys., 110, 033534, 10.1063/1.3619852
Scott Bohle, 2009, Cationic and anionic surface binding sites on nanocrystalline zinc oxide: surface influence on photoluminescence and photocatalysis, J. Am. Chem. Soc., 131, 4397, 10.1021/ja808663b
Chen, 2002, Particle size comparison of hydrothermally synthesized cobalt and zinc aluminate spinels, J. Am. Ceram. Soc., 85, 2949, 10.1111/j.1151-2916.2002.tb00561.x
Wei, 2006, Synthesis and characterization of nanosized zinc aluminate spinel by sol–gel technique, Mater. Lett., 60, 823, 10.1016/j.matlet.2005.10.024
Roy, 2007, Antiproliferative effect on human cancer cell lines after treatment with nimbolide extracted from an edible part of the neem tree (Azadirachtaindica), Phytother. Res., 21, 243, 10.1002/ptr.2058
Landini, 2010, Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal, Appl. Microbiol. Biotechnol., 86, 813, 10.1007/s00253-010-2468-8
Sutherland, 2001, Biofilm exopolysaccharides: a strong and sticky framework, J. Microbiol., 147, 3, 10.1099/00221287-147-1-3
Ahamed, 2008, DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells, Toxicol. Appl. Pharmacol., 233, 404, 10.1016/j.taap.2008.09.015
Zakaria, 2007, Free radical scavenging activity of some plants available in Malaysia, Iran. J. Pharmacol. Ther., 6, 87
Helen, 2015, Characterization and antimicrobial study of nickel nanoparticles synthesized from Dioscorea (elephant yam) by green route, Int. J. Sci. Res., 4, 216
Hassen, 1998, Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis, Bioresour. Technol., 65, 73, 10.1016/S0960-8524(98)00011-X
Nel, 2006, Toxic potential of materials at the nanolevel, Science, 311, 622, 10.1126/science.1114397
Jiang, 2009, Bacterial toxicity comparison between nano- and micro-scaled oxide particles, Environ. Pollut., 157, 1619, 10.1016/j.envpol.2008.12.025
Simon-Deckers, 2009, Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria, Environ. Sci. Technol., 43, 8423, 10.1021/es9016975
Thill, 2006, Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism, Environ. Sci. Technol., 40, 6151, 10.1021/es060999b
Ireland, 1993, Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation, Appl. Environ. Microbiol., 59, 1668, 10.1128/AEM.59.5.1668-1670.1993
Basak, 2014, Dual role of acidic diacetate sophorolipid as biostabilizer for ZnO nanoparticle synthesis and biofunctionalizing agent against Salmonella enterica and Candida albicans, J. Microbiol. Biotechnol., 24, 87, 10.4014/jmb.1307.07081
Kenneth, 2010, Silver nanoparticles-the real ‘silver bullet’ in clinical medicine, Med. Chem. Commun., 1, 125, 10.1039/c0md00069h
Baek, 2011, Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus, Sci. Total Environ., 409, 1603, 10.1016/j.scitotenv.2011.01.014
Du, 2004, Proteins are major initial cell targets of hydroxyl free radicals, Int. J. Biochem. Cell Biol., 36, 2334, 10.1016/j.biocel.2004.05.012
Xia, 2006, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Lett., 6, 1794, 10.1021/nl061025k