Green’s function for elliptic systems: existence and Delmotte–Deuschel bounds

Springer Science and Business Media LLC - Tập 56 - Trang 1-51 - 2017
Joseph G. Conlon1, Arianna Giunti2, Felix Otto2
1Department of Mathematics, University of Michigan, Ann Arbor, US
2Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

Tóm tắt

This paper is divided into two parts: In the main deterministic part, we prove that for an open domain $$D \subset \mathbb {R}^d$$ with $$d \ge 2$$ , for every (measurable) uniformly elliptic tensor field a and for almost every point $$y \in D$$ , there exists a unique Green’s function centred in y associated to the vectorial operator $$-\nabla \cdot a\nabla $$ in D. This result implies the existence of the fundamental solution for elliptic systems when $$d>2$$ , i.e. the Green function for $$-\nabla \cdot a\nabla $$ in $$\mathbb {R}^d$$ . In the second part, we introduce a shift-invariant ensemble $$\langle \cdot \rangle $$ over the set of uniformly elliptic tensor fields, and infer for the fundamental solution G some pointwise bounds for $$\langle |G(\cdot ; x,y)|\rangle $$ , $$\langle |\nabla _x G(\cdot ; x,y)|\rangle $$ and $$\langle |\nabla _x\nabla _y G(\cdot ; x,y)|\rangle $$ . These estimates scale optimally in space and provide a generalisation to systems of the bounds obtained by Delmotte and Deuschel for the scalar case.

Tài liệu tham khảo

Aronson, D.: Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math. Soc. 73, 890–896 (1967) Auscher, P., Tchamitchian, Ph.: Gaussian estimates for second order elliptic divergence operators on Lipschitz and \(C^1\) domains. In: Evolution Equations and Their Applications in Physical and Life Sciences (Bad Herrenalb, 1998), 1532, Lecture Notes in Pure and Appl. Math., 215, Dekker, New York (2001) Avellaneda, M., Lin, F.-H.: Compactness methods in the theory of homogenization. Commun. Pure Appl. Math. 40(6), 803847 (1987). MR 910954 (88i:35019) Bella, P., Giunti, A.: Green’s function for elliptic systems: moment bounds. Netw. Heterogen. Media (to appear). arXiv:1512.01029 Bella, P., Giunti, A., Otto, F.: Quantitative stochastic homogenization: local control of homogenization error through corrector, arXiv:1504.02487, to appear in IAS/ Park City Mathematics Series Brydges, D.: Lectures on the renormalisation group, statistical mechanics, pp. 7–93, IAS/Park City Math. Ser., 16, American Mathematical Society, Providence (2009) Cho, S., Dong, H., Kim, S.: Global estimates for Greens matrix of second order parabolic systems with application to elliptic systems in two dimensional domains. Potential Anal. 36(2), 339–372 (2012) Conlon, J., Naddaf, A.: Greens functions for elliptic and parabolic equations with random coefficients. New York J. Math. 6, 153–225 (2000) Conlon, J., Spencer, T.: Strong convergence to the homogenized limit of elliptic equations with random coefficients. Trans. Am. Math. Soc. 366, 1257–1288 (2014) De Giorgi, E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. UMI 4, 135–137 (1968) Delmotte, T., Deuschel, J.: On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to \(\nabla \phi \) interface model. Probab. Theory Relat. Fields 133, 358–390 (2005) Dolzmann, G., Müller, S.: Estimates for Greens matrices of elliptic systems by \(L^p\)-theory. Manuscripta Math 88(2), 261273 (1995) Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. CRC Press, Boca Raton (1992) Fischer, J., Otto, F.: A higher-order large-scale regularity theory for random elliptic operators, arXiv:1503.07578 Fuchs, M.: The Green matrix for strongly elliptic systems of second order with continuous coefficients. Z. Anal. Anwendungen 5(6), 507531 (1986) Gawedzki, K., Kupiainen, A.: Lattice dipole gas and \((\nabla \phi )^4\) models at long distances: decay of correlations and scaling limit. Commun. Math. Phys. 92, 531–553 (1984) Gloria, A., Otto, F.: An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab. 39, 779–856 (2011) Gloria, A., Otto, F.: Quantitative results on the corrector equation in Stochastic Homogenization, arXiv:1409.0801 Gloria, A., Neukamm, S., Otto, F.: An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations. ESAIM Math. Model. Numer. Anal. 48(2), 325–346 (2014) Grüter, M., Widman, K.O.: The Green function for uniformly elliptic equations. Manuscr. Math. 37, 303–342 (1982) Hofmann, S., Kim, S.: The green function estimates for strongly elliptic systems of second order. Manuscripta Math. 124(2), 139–172 (2007) Kang, K., Kim, S.: Global pointwise estimates for Green’s matrix of second order elliptic systems. J. Differ. Equ. 249(11), 2643–2662 (2010) Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa (III) 17, 43–77 (1963) Marahrens, D., Otto, F.: Annealed estimates on the Green’s function. Probab. Theory Relat. Fields 163(3), 527–573 (2014) Naddaf, A., Spencer, T.: On homogenization and scaling limit of some gradient perturbations of a massless free field. Commun. Math. Phys. 183, 55–84 (1997) Naddaf, A., Spencer, T.: Estimates on the variance of some homogenization problems. Preprint (1998) Otto, F.: Evolution of microstructure: an example. In: Fiedler, B. (ed.) Ergodic theory, analysis, and efficient simulation of dynamical systems, pp. 501–522. Springer, Berlin (2001) Piccinini, L.C., Spagnolo, S.: On the Hölder continuity of solutions of second order elliptic equations in two variables. Ann. Scuola Norm. Sup. Pisa (3) 26, 391402 (1972) Spencer, T.: Scaling, the free field and statistical mechanics. In: The Legacy of Norbert Wiener: A Centennial Symposium (Cambridge, MA, 1994). Proceedings of Symposium Pure Mathematical Vol. 60 (Amer. Math. Soc., Providence, 1997)