Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review

Springer Science and Business Media LLC - Tập 18 - Trang 1569-1580 - 2020
Shrabana Sarkar1, Nidia Torres Ponce2, Aparna Banerjee3, Rajib Bandopadhyay1, Saravanan Rajendran4, Eric Lichtfouse5
1UGC-Center of Advanced Study, Department of Botany, The University of Burdwan, Golapbag, Bardhaman, India
2School of Biotechnology Engineering, Faculty of Agricultural and Forestry Sciences, Universidad Católica del Maule, Talca, Chile
3Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
4Department of Mechanical Engineering, Faculty of Engineering, University of Tarapacá, Arica, Chile
5Aix-Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France

Tóm tắt

Pure and drinkable water will be rarer and more expensive as the result of pollution induced by industrialisation, urbanisation and population growth. Among the numerous sources of water pollution, the textile industry has become a major issue because effluents containing dyes are often released in natural water bodies. For instance, about two years are needed to biodegrade dye-derived, carcinogenic aromatic amines, in sediments. Classical remediation methods based upon physicochemical reactions are costly and still generate sludges that contain amine residues. Nonetheless, recent research shows that nanomaterials containing biopolymers are promising to degrade organic pollutants by photocatalysis. Here, we review the synthesis and applications of biopolymeric nanomaterials for photocatalytic degradation of azo dyes. We focus on conducting biopolymers incorporating metal, metal oxide, metal/metal oxide and metal sulphide for improved biodegradation. Biopolymers can be obtained from microorganisms, plants and animals. Unlike fossil-fuel-derived polymers, biopolymers are carbon neutral and thus sustainable in the context of global warming. Biopolymers are often biodegradable and biocompatible.

Tài liệu tham khảo

Adnan MAM, Phoon BL, Julkapli NM (2020) Mitigation of pollutants by chitosan/metallic oxide photocatalyst: a review. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.121190 Ahmed HB (2019) Recruitment of various biological macromolecules in fabrication of gold nanoparticles: overview for preparation and applications. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.08.138 Alhamlan FS, Al-Qahtani AA, Al-Ahdal MNA (2015) Recommended advanced techniques for waterborne pathogen detection in developing countries. J Infect Dev Ctries 9(02):128–135. https://doi.org/10.3855/jidc.6101 Ali N, Kamal T, Ul-Islam M, Khan A, Shah SJ, Zada A (2018) Chitosan-coated cotton cloth supported copper nanoparticles for toxic dye reduction. Int J Biol Macromol 111:832–838. https://doi.org/10.1016/j.ijbiomac.2018.01.092 Alzahrani E (2015) Eco-friendly production of silver nanoparticles from peel of tangerine for degradation of dye. http://dx.doi.org/10.4236/wjnse.2015.51002 Azizi S, Ahmad M, Hussein M, Ibrahim N (2013) Synthesis, antibacterial and thermal studies of cellulose nanocrystal stabilized ZnO–Ag heterostructure nanoparticles. Molecules 18(6):6269–6280. https://doi.org/10.3390/molecules18066269 Bahal M, Kaur N, Sharotri N, Sud D (2019) Investigations on amphoteric chitosan/TiO2 bionanocomposites for application in visible light induced photocatalytic degradation. Adv Polym Technol. https://doi.org/10.1155/2019/2345631 Banerjee A, Bandopadhyay R (2016) Use of dextran nanoparticle: a paradigm shift in bacterial exopolysaccharide based biomedical applications. Int J Biol Macromol 87:295–301. https://doi.org/10.1016/j.ijbiomac.2016.02.059 Binaeian E, Seghatoleslami N, Chaichi MJ, Tayebi HA (2016) Preparation of titanium dioxide nanoparticles supported on hexagonal mesoporous silicate (HMS) modified by oak gall tannin and its photocatalytic performance in degradation of azo dye. Adv Powder Technol 27(4):1047–1055. https://doi.org/10.1016/j.apt.2017.05.025 Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used in wastewater treatment. Environ Chem Lett 17:145–155. https://doi.org/10.1007/s10311-018-0785-9 Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019a) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213. https://doi.org/10.1007/s10311-018-0786-8 Crini G, Torri G, Lichtfouse E, Kyzas GZ, Wilson LD, Morin-Crini N (2019b) Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environ Chem Lett 17:1645–1666. https://doi.org/10.1007/s10311-019-00903-y Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila LM, Sarma SJ, Brar SK (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2(1):18. https://doi.org/10.1007/s41204-017-0029-4 Devi LG, Kavitha R (2013) A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity. Appl Catal B 140:559–587. https://doi.org/10.1016/j.apcatb.2013.04.035 Dong S, Feng J, Fan M, Pi Y, Hu L, Han X, Liu M, Sun J, Sun J (2015) Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv 5(19):14610–14630. https://doi.org/10.1039/C4RA13734E Dos Santos AB, Cervantes FJ, Van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Biores Technol 98(12):2369–2385. https://doi.org/10.1016/j.biortech.2006.11.013 Durgalakshmi D, Rajendran S, Naushad M (2019) Current role of nanomaterials in environmental remediation. In: Advanced nanostructured materials for environmental remediation. Springer, Cham, pp 1–20. https://doi.org/10.1007/978-3-030-04477-0_1 Elfeky AS, Salem SS, Elzaref AS, Owda ME, Eladawy HA, Saeed AM, Fouda A (2020) Multifunctional cellulose nanocrystal/metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydr Polym 230:115711. https://doi.org/10.1016/j.carbpol.2019.115711 Farshchi E, Pirsa S, Roufegarinejad L, Alizadeh M, Rezazad M (2019) Photocatalytic/biodegradable film based on carboxymethyl cellulose, modified by gelatin and TiO2–Ag nanoparticles. Carbohydr Polym 216:189–196. https://doi.org/10.1016/j.carbpol.2019.03.094 Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37. https://doi.org/10.1038/238037a0 Gholami S, Naderi M, Yousefi M, Arjmand MM (2019) The electrochemical removal of bacteria from drinking water. Desalin Water Treat 160:110–115. https://doi.org/10.5004/dwt.2019.24181 Gnanasekaran L, Hemamalini R, Saravanan R, Ravichandran K, Gracia F, Agarwal S, Gupta VK (2017) Synthesis and characterization of metal oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) nanoparticles as photo catalysts for degradation of textile dyes. J Photochem Photobiol, B 173:43–49. https://doi.org/10.1016/j.jphotobiol.2017.05.027 Gnanasekaran L, Hemamalini R, Naushad M (2018) Efficient photocatalytic degradation of toxic dyes using nanostructured TiO2/polyaniline nanocomposite. Desalin Water Treat 108:322–328. https://doi.org/10.5004/dwt.2018.21967 Ito T, Adachi Y, Yamanashi Y, Shimada Y (2016) Long–term natural remediation process in textile dye–polluted river sediment driven by bacterial community changes. Water Res 100:458–465. https://doi.org/10.1016/j.watres.2016.05.050 Jawad AH, Mubarak NSA, Abdulhameed AS (2020) Hybrid crosslinked chitosan–epichlorohydrin/TiO2 nanocomposite for reactive red 120 dye adsorption: kinetic, isotherm, thermodynamic, and mechanism study. J Polym Environ 28(2):624–637. https://doi.org/10.1007/s10924-019-01631-8 Kamal T, Khan SB, Asiri AM (2016) Synthesis of zero-valent Cu nanoparticles in the chitosan coating layer on cellulose microfibers: evaluation of azo dyes catalytic reduction. Cellulose 23(3):1911–1923. https://doi.org/10.1007/s10570-016-0919-9 Karimi-Maleh H, Arotiba OA (2020) Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J Colloid Interface Sci 560:208–212. https://doi.org/10.1016/j.jcis.2019.10.007 Karimi-Maleh H, Karimi F, Alizadeh M, Sanati AL (2019) Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem Rec. https://doi.org/10.1002/tcr.201900092 Karimi-Maleh H, Cellat K, Arıkan K, Savk A, Karimi F, Şen F (2020a) Palladium–nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater Chem Phys 250:123042. https://doi.org/10.1016/j.matchemphys.2020.123042 Karimi-Maleh H, Karimi F, Malekmohammadi S, Zakariae N, Esmaeili R, Rostamnia S, Razmjou A (2020b) An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J Mol Liq. https://doi.org/10.1016/j.molliq.2020.113185 Karimi-Maleh H, Shafieizadeh M, Taher MA, Opoku F, Kiarii EM, Govender PP, Orooji Y (2020c) The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J Mol Liq 298:112040. https://doi.org/10.1016/j.molliq.2019.112040 Kasiri MB (2019) Application of chitosan derivatives as promising adsorbents for treatment of textile wastewater. In: The impact and prospects of green chemistry for textile technology. Woodhead Publishing, pp 417–469. https://doi.org/10.1016/B978-0-08-102491-1.00014-9 Khan SA, Khan SB, Farooq A, Asiri AM (2019) A facile synthesis of CuAg nanoparticles on highly porous ZnO/carbon black-cellulose acetate sheets for nitroarene and azo dyes reduction/degradation. Int J Biol Macromol 130:288–299. https://doi.org/10.1016/j.ijbiomac.2019.02.114 Khaoulani S, Chaker H, Cadet C, Bychkov E, Cherif L, Bengueddach A, Fourmentin S (2015) Wastewater treatment by cyclodextrin polymers and noble metal/mesoporous TiO2 photocatalysts. C R Chim 18(1):23–31. https://doi.org/10.1016/j.crci.2014.07.004 Kim HC, Yu MJ (2005) Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control. Water Res 39(19):4779–4789. https://doi.org/10.1016/j.watres.2005.09.021 Kolangare IM, Isloor AM, Karim ZA, Kulal A, Ismail AF, Asiri AM (2019) Antibiofouling hollow-fiber membranes for dye rejection by embedding chitosan and silver-loaded chitosan nanoparticles. Environ Chem Lett 17:581–587. https://doi.org/10.1007/s10311-018-0799-3 Kora AJ, Rastogi L (2016) Catalytic degradation of anthropogenic dye pollutants using palladium nanoparticles synthesized by gum olibanum, a glucuronoarabinogalactan biopolymer. Ind Crops Prod 81:1–10. https://doi.org/10.1016/j.indcrop.2015.11.055 Kralik M, Biffis A (2001) Catalysis by metal nanoparticles supported on functional organic polymers. J Mol Catal A: Chem 177(1):113–138. https://doi.org/10.1016/S1381-1169(01)00313-2 Kuo CY, Jheng HK, Syu SE (2019) Effect of non-metal doping on the photocatalytic activity of titanium dioxide on the photodegradation of aqueous bisphenol A. Environ Technol. https://doi.org/10.1080/09593330.2019.1674930 Lade H, Kadam A, Paul D, Govindwar S (2015) Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes. EXCLI J 14:158. https://doi.org/10.17179/excli2014-642 Li M, Noriega-Trevino ME, Nino-Martinez N, Marambio-Jones C, Wang J, Damoiseaux R, Hoek EM (2011) Synergistic bactericidal activity of Ag–TiO2 nanoparticles in both light and dark conditions. Environ Sci Technol 45(20):8989–8995. https://doi.org/10.1021/es201675m Li G, Li Y, Wang Z, Liu H (2017a) Green synthesis of palladium nanoparticles with carboxymethyl cellulose for degradation of azo-dyes. Mater Chem Phys 187:133–140. https://doi.org/10.1016/j.matchemphys.2016.11.057 Li G, Nandgaonkar AG, Wang Q, Zhang J, Krause WE, Wei Q, Lucia LA (2017b) Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: evaluation for photo-and bio-catalytic dye degradation. J Membr Sci 525:89–98. https://doi.org/10.1016/j.memsci.2016.10.033 Lichtfouse E, Morin-Crini N, Fourmentin M, Zemmouri H, Oliveira Carmo do Nascimento I, Queiroz LM, Tadza MYM, Picos-Corrales LA, Pei H, Wilson LD, Crini G (2019) Chitosan for direct bioflocculation of wastewater. Environ Chem Lett 17:1603–1621. https://doi.org/10.1007/s10311-019-00900-1 Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ, Jenkins A, Ferrier RC, Li H, Luo W, Wang T (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15. https://doi.org/10.1016/j.envint.2014.12.010 Malagutti AR, Mourao HA, Garbin JR, Ribeiro C (2009) Deposition of TiO2 and Ag: TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes. Appl Catal B 90(1–2):205–212. https://doi.org/10.1016/j.apcatb.2009.03.014 Mansur HS, Mansur AAP (2015) Nano-photocatalysts based on ZnS quantum dots/chitosan for the photodegradation of dye pollutants. In: IOP conference series: materials science and engineering, vol 76, no. 1, p 012003. https://doi.org/10.1088/1757-899X/76/1/012003 Mclaren A, Valdes-Solis T, Li G, Tsang SC (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131(35):12540–12541. https://doi.org/10.1021/ja9052703 Mittal H, Morajkar PP, Al Alili A, Alhassan SM (2020) In-situ synthesis of ZnO nanoparticles using gum arabic based hydrogels as a self-template for effective malachite green dye adsorption. J Polym Environ. https://doi.org/10.1007/s10924-020-01713-y Moghaddas SMTH, Elahi B, Javanbakht V (2020) Biosynthesis of pure zinc oxide nanoparticles using Quince seed mucilage for photocatalytic dye degradation. J Alloys Compd 821:153519. https://doi.org/10.1016/j.jallcom.2019.153519 Mohanraj J, Durgalakshmi D, Rakkesh RA, Balakumar S, Rajendran S, Karimi-Maleh H (2020) Facile synthesis of paper based graphene electrodes for point of care devices: a double stranded DNA (dsDNA) biosensor. J Colloid Interface Sci 566:463–472. https://doi.org/10.1016/j.jcis.2020.01.089 Morin-Crini N, Lichtfouse E, Torri G, Crini G (2019) Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem Lett 17:1667–1692. https://doi.org/10.1007/s10311-019-00904-x Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33. https://doi.org/10.1016/j.desal.2010.11.033 Ngah WW, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83(4):1446–1456. https://doi.org/10.1016/j.carbpol.2010.11.004 Oliveira LV, Bennici S, Josien L, Limousy L, Bizeto MA, Camilo FF (2020) Free-standing cellulose film containing manganese dioxide nanoparticles and its use in discoloration of indigo carmine dye. Carbohydr Polym 230:115621. https://doi.org/10.1016/j.carbpol.2019.115621 Opoku F, Kiarii EM, Govender PP, Mamo MA (2017) Metal oxide polymer nanocomposites in water treatments. Descriptive inorganic chemistry researches of metal compounds. In: IntechOpen, vol 173. https://doi.org/10.5772/67835 Pandey S, Do JY, Kim J, Kang M (2020) Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst. Carbohydr Polym 230:115597. https://doi.org/10.1016/j.carbpol.2019.115597 Prasanna SS, Balaji K, Pandey S, Rana S (2019) Metal oxide based nanomaterials and their polymer nanocomposites. In: Nanomaterials and polymer nanocomposites. Elsevier, pp 123–144. https://doi.org/10.1016/B978-0-12-814615-6.00004-7 Rabeea MA, Owaid MN, Aziz AA, Jameel MS, Dheyab MA (2020) Mycosynthesis of gold nanoparticles using the extract of Flammulina velutipes, Physalacriaceae, and their efficacy for decolorization of methylene blue. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.103841 Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941. https://doi.org/10.1021/ja029267j Ravishankar TN, Manjunatha K, Ramakrishnappa T, Nagaraju G, Kumar D, Sarakar S, Anandakumar BS, Chandrappa GT, Reddy V, Dupont J (2014) Comparison of the photocatalytic degradation of trypan blue by undoped and silver-doped zinc oxide nanoparticles. Mater Sci Semicond Process 26:7–17. https://doi.org/10.1016/j.mssp.2014.03.027 Riaz U, Ashraf SM, Kashyap J (2015) Enhancement of photocatalytic properties of transitional metal oxides using conducting polymers: a mini review. Mater Res Bull 71:75–90. https://doi.org/10.1016/j.materresbull.2015.06.035 Rokhmat M, Wibowo E, Sutisna K, Abdullah M (2017) Performance improvement of TiO2/CuO solar cell by growing copper particle using fix current electroplating method. Procedia Eng 170:72–77. https://doi.org/10.1016/j.proeng.2017.03.014 Sankar R, Rizwana K, Shivashangari KS, Ravikumar V (2015) Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles. Appl Nanosci 5(6):731–736. https://doi.org/10.1007/s13204- Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V, Stephen AJMS (2013) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng, C 33(1):91–98. https://doi.org/10.1016/j.msec.2012.08.011 Sargin I, Baran T, Arslan G (2020) Environmental remediation by chitosan–carbon nanotube supported palladium nanoparticles: conversion of toxic nitroarenes into aromatic amines, degradation of dye pollutants and green synthesis of biaryls. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.116987 Sarkar S, Banerjee A, Halder U, Biswas R, Bandopadhyay R (2017) Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conserv Sci Eng 2(4):121–131. https://doi.org/10.1007/s41101-017-0031-5 Sarkar S, Banerjee A, Chakraborty N, Soren K, Chakraborty P, Bandopadhyay R (2020) Structural-functional analyses of textile dye degrading azoreductase, laccase and peroxidase: a comparative in silico study. Electron J Biotechnol 43:48–54. https://doi.org/10.1016/j.ejbt.2019.12.004 Sathiyavimal S, Vasantharaj S, Kaliannan T, Pugazhendhi A (2020) Eco-biocompatibility of chitosan coated biosynthesized copper oxide nanocomposite for enhanced industrial (Azo) dye removal from aqueous solution and antibacterial properties. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116243 Sekomo CB, Rousseau DP, Saleh SA, Lens PN (2012) Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. Ecol Eng 44:102–110. https://doi.org/10.1016/j.ecoleng.2012.03.003 Shah AH, Manikandan E, Ahmed MB, Ganesan V (2013) Enhanced bioactivity of Ag/ZnO nanorods—a comparative antibacterial study. J Nanomed Nanotechol. https://doi.org/10.1016/j.mssp.2014.03.027 Shankar S, Rhim JW (2018) Bionanocomposite films for food packaging applications. Ref Modul Food Sci. https://doi.org/10.1016/B978-0-08-100596-5.21875-1 Sharma M (2019) Transdermal and intravenous nano drug delivery systems: present and future. In: Applications of targeted nano drugs and delivery systems. Elsevier, pp 499–550. https://doi.org/10.1016/B978-0-12-814029-1.00018-1 Sharma KP, Sharma S, Sharma S, Singh PK, Kumar S, Grover R, Sharma PK (2007) A comparative study on characterization of textile wastewaters (untreated and treated) toxicity by chemical and biological tests. Chemosphere 69(1):48–54. https://doi.org/10.1016/j.chemosphere.2007.04.086 Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interface Sci 145(1–2):83–96. https://doi.org/10.1016/j.cis.2008.09.002 Sharma VK, Jinadatha C, Lichtfouse E (2020) Environmental chemistry is most relevant to study coronavirus pandemics. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01017-6 Singh RL, Singh PK, Singh RP (2015) Enzymatic decolorization and degradation of azo dyes—a review. Int Biodeterior Biodegrad 104:21–31. https://doi.org/10.1016/j.ibiod.2015.04.027 Sirajudheen P, Meenakshi S (2019) Facile synthesis of chitosan–La3+-graphite composite and its influence in photocatalytic degradation of methylene blue. Int J Biol Macromol 133:253–261. https://doi.org/10.1016/j.ijbiomac.2019.04.073 Škorić ML, Terzić I, Milosavljević N, Radetić M, Šaponjić Z, Radoičić M, Krušić MK (2016) Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes. Eur Polym J 82:57–70. https://doi.org/10.1016/j.eurpolymj.2016.06.026 Sreedharan V, Rao KVB (2019) Biodegradation of Textile Azo Dyes. In: Nanoscience and biotechnology for environmental applications. Springer, Cham, pp 115–139. https://doi.org/10.1007/978-3-319-97922-9_5 Subramanian V, Wolf E, Kamat PV (2001) Semiconductor–metal composite nanostructures To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J Phys Chem B 105(46):11439–11446. https://doi.org/10.1021/jp011118k Sulaiman SN, Noh MZ, Adnan NN, Bidin N, Ab Razak SN (2018) Effects of photocatalytic activity of metal and non-metal doped TiO2 for hydrogen production enhancement—a review. J Phys: Conf Ser 1027(1):012006. https://doi.org/10.1088/1742-6596/1027/1/012006 Sultana S, Ahmad N, Faisal SM, Owais M, Sabir S (2017) Synthesis, characterisation and potential applications of polyaniline/chitosan–Ag-nano-biocomposite. IET Nanobiotechnol 11(7):835–842. https://doi.org/10.1049/iet-nbt.2016.0215 Taghizadeh MT, Siyahi V, Ashassi-Sorkhabi H, Zarrini G (2020) ZnO, AgCl and AgCl/ZnO nanocomposites incorporated chitosan in the form of hydrogel beads for photocatalytic degradation of MB, E. coli and S. aureus. Int J Biol Macromol 147:1018–1028. https://doi.org/10.1016/j.ijbiomac.2019.10.070 Tamayo L, Palza H, Bejarano J, Zapata PA (2019) Polymer composites with metal nanoparticles: synthesis, properties, and applications. In: Polymer composites with functionalized nanoparticles. Elsevier, pp 249–286. https://doi.org/10.1016/B978-0-12-814064-2.00008-1 Thakur M, Sharma G, Ahamad T, Ghfar AA, Pathania D, Naushad M (2017) Efficient photocatalytic degradation of toxic dyes from aqueous environment using gelatin-Zr (IV) phosphate nanocomposite and its antimicrobial activity. Colloids Surf B 157:456–463. https://doi.org/10.1016/j.colsurfb.2017.06.018 Tiwari A, Dhoble SJ (2016) Stabilization of ZnS nanoparticles by polymeric matrices: syntheses, optical properties and recent applications. RSC Adv 6(69):64400–64420. https://doi.org/10.1039/C6RA13108E Ulu A, Birhanli E, Boran F, Köytepe S, Yesilada O, Ateş B (2020) Laccase-conjugated thiolated chitosan–Fe3O4 hybrid composite for biocatalytic degradation of organic dyes. Int J Biol Macromol 150:871–884. https://doi.org/10.1016/j.ijbiomac.2020.02.006 Van Berkel KY, Hawker CJ (2010) Tailored composite polymer–metal nanoparticles by miniemulsion polymerization and thiol-ene functionalization. J Polym Sci, Part A: Polym Chem 48(7):1594–1606. https://doi.org/10.1002/pola.23917 Vanaamudan A, Sadhu M, Pamidimukkala P (2018) Chitosan-Guar gum blend silver nanoparticle bionanocomposite with potential for catalytic degradation of dyes and catalytic reduction of nitrophenol. J Mol Liq 271:202–208. https://doi.org/10.1016/j.molliq.2018.08.136 Vilela C, Pinto RJB, Pinto S, Marques P, Silvestre A, Barros CSDRF (2018) Polysaccharides-based hybrids with metal oxide nanoparticles. In: Polysaccharide based hybrid materials. Springer, Cham, pp 31–68. https://doi.org/10.1007/978-3-030-00347-0_3 Wang Q, Yang Z (2016) Industrial water pollution, water environment treatment, and health risks in China. Environ Pollut 218:358–365. https://doi.org/10.1016/j.envpol.2016.07.011 Wang H, Zhang W, Zhao J, Xu L, Zhou C, Chang L, Wang L (2013) Rapid decolorization of phenolic azo dyes by immobilized laccase with Fe3O4/SiO2 nanoparticles as support. Ind Eng Chem Res 52(12):4401–4407. https://doi.org/10.1021/ie302627c Wen Y, Yuan J, Ma X, Wang S, Liu Y (2019) Polymeric nanocomposite membranes for water treatment: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-019-00895-9 Wutich A, Rosinger AY, Stoler J, Jepson W, Brewis A (2019) Measuring human water needs. Am J Hum Biol 3:e23350. https://doi.org/10.1002/ajhb.23350 Xu C, Anusuyadevi PR, Aymonier C, Luque R, Marre S (2019) Nanostructured materials for photocatalysis. Chem Soc Rev 48(14):3868–3902. https://doi.org/10.1039/C9CS00102F Yang J, Chen C, Ji H, Ma W, Zhao J (2005) Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes. J Phys Chem B 109(46):21900–21907. https://doi.org/10.1021/jp0540914 Yaseen DA, Scholz M (2016) Shallow pond systems planted with Lemna minor treating azo dyes. Ecol Eng 94:295–305. https://doi.org/10.1016/j.ecoleng.2016.05.081 Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16(2):1193–1226. https://doi.org/10.1007/s13762-018-2130-z