Green chemistry synthesis of biocompatible ZnS quantum dots (QDs): their application as potential thin films and antibacterial agent

Jejiron Maheswari Baruah1, Sanjeeb Kalita2, Jyoti Narayan1
1Synthetic Nanochemistry Laboratory, Department of Basic Sciences and Social Sciences (Chemistry Division), School of Technology, North Eastern Hill University, Shillong, 793022, India
2Drug Discovery Lab, Biological and Chemical Sciences Section, Life Sciences Division, Institute of Advanced Study in Science and Technology (An Autonomous Institute Under Department of Science and Technology Government of India), Guwahati, Assam, 781035, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Li, H., Shih, W.Y., Shih, W.-H.: Synthesis and characterization of aqueous carboxyl-capped CdS quantum dots for bioapplications. Ind. Eng. Chem. Res. 46, 2013–2019 (2007). https://doi.org/10.1021/ie060963s

Jing, L., Kershaw, S.V., Li, Y., et al.: Aqueous based semiconductor nanocrystals. Chem. Rev. 116, 10623–10730 (2016). https://doi.org/10.1021/acs.chemrev.6b00041

Dahl, J.A., Maddux, B.L.S., Hutchison, J.E.: Toward greener nanosynthesis. Chem. Rev. 107, 2228–2269 (2007). https://doi.org/10.1021/cr050943k

Lu, Y.B., Li, L., Su, S.C., et al.: A novel TiO2nanostructure as photoanode for highly efficient CdSe quantum dot-sensitized solar cells. RSC Adv. 7, 9795–9802 (2017). https://doi.org/10.1039/c6ra26029b

Wang, J., Li, Y., Shen, Q., et al.: Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%. J. Mater. Chem. A 4, 877–886 (2016). https://doi.org/10.1039/c5ta09306f

Nozik, A.J.: Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion. Inorg. Chem. 44, 6893–6899 (2005). https://doi.org/10.1021/ic0508425

Rühle, S., Shalom, M., Zaban, A.: Quantum-dot-sensitized solar cells. Chem Phys Chem 11, 2290–2304 (2010). https://doi.org/10.1002/cphc.201000069

Salant, A., Shalom, M., Hod, I., et al.: quantum dot sensitized solar cells with improved efficiency prepared using electrophoretic deposition. ACS Nano 4, 5962–5968 (2010). https://doi.org/10.1021/nn1018208

Beard, M.C.: Multiple exciton generation in semiconductor quantum dots. J. Phys. Chem. Lett. 2, 1282–1288 (2011). https://doi.org/10.1021/jz200166y

Hanna, M.C., Nozik, A.J.: Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006). https://doi.org/10.1063/1.2356795

Semonin, O.E., Luther, J.M., Choi, S., et al.: Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011). https://doi.org/10.1126/science.1209845

Kamat, P.V., Tvrdy, K., Baker, D.R., Radich, J.G.: Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem. Rev. 110, 6664–6688 (2010). https://doi.org/10.1021/cr100243p

Nozik, A.: Quantum dot solar cells. Physica E 14, 115–120 (2002). https://doi.org/10.1016/s1386-9477(02)00374-0

Kamat, P.V.: Quantum dot solar cells. the next big thing in photovoltaics. J. Phys. Chem. Lett. 4, 908–918 (2013). https://doi.org/10.1021/jz400052e

Yu, W.W., Qu, L., Guo, W., Peng, X.: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003). https://doi.org/10.1021/cm034081k

Wang, J., Li, Y., Shen, Q., et al.: Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%. J. Mater. Chem. A 4, 877–886 (2016). https://doi.org/10.1039/c5ta09306f

Kershaw, S.V., Jing, L., Huang, X., et al.: Materials aspects of semiconductor nanocrystals for optoelectronic applications. Mater Horizons 4, 155–205 (2017). https://doi.org/10.1039/c6mh00469e

Kamat, P.V.: Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111, 2834–2860 (2007). https://doi.org/10.1021/jp066952u

Michalet, X.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005). https://doi.org/10.1126/science.1104274

Talapin, D.V., Lee, J.-S., Kovalenko, M.V., Shevchenko, E.V.: Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010). https://doi.org/10.1021/cr900137k

Kamat, P.V.: Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev. 93, 267–300 (1993). https://doi.org/10.1021/cr00017a013

Thompson, T.L., Yates, J.T.: TiO2-based photocatalysis: surface defects, oxygen and charge transfer. Top. Catal. 35, 197–210 (2005). https://doi.org/10.1007/s11244-005-3825-1

Harris, C., Kamat, P.V.: Photocatalysis with cdse nanoparticles in confined media: mapping charge transfer events in the subpicosecond to second timescales. ACS Nano 3, 682–690 (2009). https://doi.org/10.1021/nn800848y

Tachikawa, T., Fujitsuka, M., Majima, T.: Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J. Phys. Chem. C 111, 5259–5275 (2007). https://doi.org/10.1021/jp069005u

http://www.google.com/patents/US7916065 . Accessed 29 Mar 2011

NASA https://www.nasa.gov/feature/goddard/2017/nasa-and-mit-collaborate-to-develop-space-based-quantum-dot-spectrometer . Accessed 14 Feb 2017

Wegner, K.D., Hildebrandt, N.: Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 44, 4792–4834 (2015). https://doi.org/10.1039/c4cs00532e

Xing, Y., Chaudry, Q., Shen, C., et al.: Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2, 1152–1165 (2007). https://doi.org/10.1038/nprot.2007.107

Yezhelyev, M.E.V., Al-Hajj, A., Morris, C., et al.: In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots. Adv. Mater. 19, 3146–3151 (2007). https://doi.org/10.1002/adma.200701983

Smith, A.M., Dave, S., Nie, S., et al.: Multicolor quantum dots for molecular diagnostics of cancer. Exp. Rev. Mol. Diagn. 6, 231–244 (2006). https://doi.org/10.1586/14737159.6.2.231

Elward, J.M., Chakraborty, A.: Effect of dot size on exciton binding energy and electron-hole recombination probability in cdse quantum dots. J. Chem. Theory Comput. 9, 4351–4359 (2013). https://doi.org/10.1021/ct400485s

Franceschetti, A., Zunger, A.: Direct pseudopotential calculation of exciton coulomb and exchange energies in semiconductor quantum dots. Phys. Rev. Lett. 78, 915–918 (1997). https://doi.org/10.1103/physrevlett.78.915

Kasap, S.O., Capper, P.: Springer Handbook of Electronic and Photonic Materials. Springer, Boston (2007)

Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996). https://doi.org/10.1126/science.271.5251.933

Nozik, A.J., Beard, M.C., Luther, J.M., et al.: Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010). https://doi.org/10.1021/cr900289f

Form EIA-63B, Annual Photovoltaic Module/Cell Manufacturers Survey, Energy Information Administration, USA, 2006

Ginley, D., Green, M.A., Collins, R.: Solar Energy conversion toward 1 terawatt. MRS Bull. 33, 355–364 (2008). https://doi.org/10.1557/mrs2008.71

King, R.R., Law, D.C., Edmondson, K.M., et al.: 40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells. Appl. Phys. Lett. 90, 183516 (2007). https://doi.org/10.1063/1.2734507

Dimroth, F., Kurtz, S.: High-efficiency multijunction solar cells. MRS Bull. 32, 230–235 (2007). https://doi.org/10.1557/mrs2007.27

Luque, A., Martí, A., Nozik, A.J.: Solar cells based on quantum dots: multiple exciton generation and intermediate bands. MRS Bull. 32, 236–241 (2007). https://doi.org/10.1557/mrs2007.28

Green, M.A.: Third Generation Photovoltaics: Advanced Solar Energy Conversion. Springer, Berlin (2006)

Martí, A.: Next Generation Photovoltaics: High Efficiency Through Full Spectrum Utilization. Institute of Physics Publishing, Bristol (2004)

Kalita, S., Kandimalla, R., Devi, B., et al.: Dual delivery of chloramphenicol and essential oil by poly-ε-caprolactone–Pluronic nanocapsules to treat MRSA-Candida co-infected chronic burn wounds. RSC Adv. 7, 1749–1758 (2017). https://doi.org/10.1039/c6ra26561h

Kandimalla, R., Kalita, S., Choudhury, B., et al.: Fiber from ramie plant (Boehmeria nivea): a novel suture biomaterial. Mater. Sci. Eng. C 62, 816–822 (2016). https://doi.org/10.1016/j.msec.2016.02.040

Kotoky, J., Kandimalla, R., Kalita, S., et al.: Chloramphenicol encapsulated in poly-ε-caprolactone–pluronic composite: nanoparticles for treatment of MRSA-infected burn wounds. Int. J. Nanomed. (2015). https://doi.org/10.2147/ijn.s75023

Kalita, S., Kandimalla, R., Sharma, K.K., et al.: Amoxicillin functionalized gold nanoparticles reverts MRSA resistance. Mater. Sci. Eng. C 61, 720–727 (2016). https://doi.org/10.1016/j.msec.2015.12.078

General Area Detector Diffraction System (GADDS) User Manual (2005). Bruker Advanced X-Ray Solutions. https://depts.washington.edu/moleng/wordpress/wp-content/uploads/2015/03/GADDS_Manual.pdf . Accessed Jan 2005

Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938). https://doi.org/10.1021/ja01269a023

Murray, C.B., Norris, D.J., Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993). https://doi.org/10.1021/ja00072a025

Manzoor, K., Johny, S., Thomas, D., et al.: Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging. Nanotechnology 20, 065102 (2009). https://doi.org/10.1088/0957-4484/20/6/065102

Thomas, T.R.: Rough Surfaces. Imperial College Press, London (1999)

Kumar, B.R., Rao, T.S.: AFM Studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Dig. J. Nanomater. Biostruct. 7, 1881–1889 (2012)

Chen, Y., Li, S., Huang, L., Pan, D.: Single-step direct fabrication of luminescent Cu-doped ZnxCd1−xS quantum dot thin films via a molecular precursor solution approach and their application in luminescent, transparent, and conductive thin films. Nanoscale 6, 9640–9645 (2014). https://doi.org/10.1039/c4nr02237h

Jayasree, A., Sasidharan, S., Koyakutty, M., et al.: Mannosylated chitosan-zinc sulphide nanocrystals as fluorescent bioprobes for targeted cancer imaging. Carbohydr. Polym. 85, 37–43 (2011). https://doi.org/10.1016/j.carbpol.2011.01.034

Chen, L., Mccrate, J.M., Lee, J.C.-M., Li, H.: The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22, 105708 (2011). https://doi.org/10.1088/0957-4484/22/10/105708

Li, S., Guo, Z., Zhang, Y., et al.: Blood compatibility evaluations of fluorescent carbon dots. ACS Appl. Mater. Interfaces. 7, 19153–19162 (2015). https://doi.org/10.1021/acsami.5b04866

Armentano, I., Arciola, C.R., Fortunati, E., Ferrari, D., Mattioli, S., Amoroso, C.F., Rizzo, J., Kenny, J.M., Imbriani, M., Visai, L.: The interaction of bacteria with engineered nanostructured polymeric materials: a review. Sci. World J. 2014, 1–18 (2014). https://doi.org/10.1155/2014/410423

Li, H., Chen, Q., Zhao, J., Urmila, K.: Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci. Rep. (2015). https://doi.org/10.1038/srep11033

Luan, B., Huynh, T., Zhou, R.: Complete wetting of graphene by biological lipids. Nanoscale. 8, 5750–5754 (2016). https://doi.org/10.1039/C6NR00202A

Gao, W., Thamphiwatana, S., Angsantikul, P., Zhang, L.: Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 6, 532–547 (2014). https://doi.org/10.1002/wnan.1282

Mukha, I.P., Eremenko, A.M., Smirnova, N.P., Mikhienkova, A.I., Korchak, G.I., Gorchev, V.F., Chunikhin, A.Y.: Antimicrobial activity of stable silver nanoparticles of a certain size. Appl. Biochem. Microbiol. 49, 199–206 (2013). https://doi.org/10.1134/S0003683813020117

Xu, Y., Wei, M.-T., Ou-Yang, H.D., Walker, S.G., Wang, H.Z., Gordon, C.R., Guterman, S., Zawacki, E., Applebaum, E., Brink, P.R., Rafailovich, M., Mironava, T.: Exposure to TiO2 nanoparticles increases Staphylococcus aureus infection of HeLa cells. J. Nanobiotechnol. (2016). https://doi.org/10.1186/s12951-016-0184-y

Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., Dash, D.: Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 18, 225103 (2007). https://doi.org/10.1088/0957-4484/18/22/225103

Yang, W., Shen, C., Ji, Q., An, H., Wang, J., Liu, Q., Zhang, Z.: Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology. 20, 085102 (2009). https://doi.org/10.1088/0957-4484/20/8/085102