Green Synthesis of Silver (Ag) Nanoparticles Using Extract of Apple and Grape and with Enhanced Visible Light Photocatalytic Activity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdel Messih, M. F., Ahmed, M. A., Soltan, A., & Anis, S. S. (2017). Facile approach for homogeneous dispersion of metallic silver nanoparticles on the surface of mesoporous titania for photocatalytic degradation of methylene blue and indigo carmine dyes. Journal of Photochemistry and Photobiology A Chemistry, 335, 40–51.
Aronne, A., Fantauzzi, M., Imparato, A. D., De Stefano, L., D'Errico, G., Sannino, F., Rea, I., Pirozzi, D., Elsener, B., Pernice, P., & Rossi, A. (2017). Electronic properties of TiO2-based materials characterized by high Ti3+ self-doping and low recombination rate of electron–hole pairs. RSC Advances, 7, 2373–2381.
Bi, Y. P., Hu, H. Y., Ouyang, S. X., Lu, G. X., Cao, J. Y., & Ye, J. H. (2012). Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges. Chemical Communications, 48, 3748–3750.
Choi, Y., Ho, N., & Tung, C. (2007). Sensing phosphatase activity by using gold nanoparticles. Angewandte Chemie, International Edition, 46, 707–709.
Choudhary, T. V., Sivadinarayana, C., Chusuei, C. C., Datye, A. K., Fackler, J. P., Jr., & Goodman, D. W. (2002). CO oxidation on supported nano-au catalysts synthesized from a [Au6(PPh3)6](BF4)2 complex. Journal of Catalysis, 207, 247–255.
Domínguez, M. I., Romero-Sarria, F., Centeno, M. A., & Odriozola, J. A. (2009). Gold/hydroxyapatite catalysts: Synthesis, characterization and catalytic activity to CO oxidation. Applied Catalysis. B, Environmental, 87, 245–251.
Elemike, E. E., Onwudiwe, D. C., Ekennia, A. C., & Nnaji, N. J. (2017). Phytosynthesis of silver nanoparticles using aqueous leaf extracts of Lippia citriodora: Antimicrobial, larvicidal and photocatalytic evaluations. Materials Science and Engineering: C, 75, 980–989.
Fayaza, M., Tiwary, C. S., Kalaichelvan, P. T., & Venkatesan, R. (2010). Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids and Surfaces B Biointerfaces, 75, 175–178.
Haller, G. L., & Resasco, D. E. (1989). Metal-support interaction: Group VIII metals and reducible oxides. Advances in Catalysis, 36, 173–235.
Li, J., Fang, W., Yu, C., Zhou, W., & Yu, X. (2015). Ag-based semiconductor photocatalysts in environmental purification. Applied Surface Science, 358, 46–56.
Jin, L., Zhu, G. Q., Hojamberdiev, M., Luo, X. C., Tan, C. W., Peng, J. H., Wei, X. M., Li, J. P., & Liu, P. A. (2014). Plasmonic ag-AgBr/Bi2O2CO3 composite photocatalyst with enhanced visible-light photocatalytic activity. Industrial and Engineering Chemistry Research, 53, 13718–13727.
Kathiravan, V., Ravi, S., & Ashokkumar, S. (2014). Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 130, 116–121.
Kholoud, M. M., El-Nour, A., Eftaiha, A., Al-Warthan, A., & Reda Ammar, A. A. (2010). Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry, 3, 135–140.
Li, S., Zhou, P., Zhang, W., Chen, S., & Peng, H. (2014). Effective photocatalytic decolorization of methylene blue utilizing ZnO/rectorite nanocomposite under simulated solar irradiation. Journal of Alloys and Compounds, 616, 227–234.
Parthibavarman, M., Karthik, M., Sathishkumar, P., & Poonguzhali, R. (2018). Rapid synthesis of novel Cr doped WO3 nanorods an efficient electrochemical and photocatalytic performance. Journal of the Iranian Chemical Society, 15, 1419–1430.
Parthibavarman, M., Sathishkumar, S., & Prabhakaran, S. (2017). Enhanced visible light photocatalytic activity of tin oxide nanoparticles synthesized by different microwave optimum conditions. Journal of Materials Science: Materials in Electronics, 29, 2341–2350.
Parthibavarman, M., Vallalperuman, K., Sathishkumar, S., Durairaj, M., & Thavamani, K. (2014). A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. Journal of Materials Science: Materials in Electronics, 25, 730–735.
Smitha, S. L., Nissamudeen, K. M., Philip, D., & Gopchandran, K. G. (2008). Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochimica Acta Part A, 71, 186–190.
Sudrik, S., Chaki, N., Chavan, V., & Chavan, S. (2006). Silver nanocluster redox-couple-promoted nonclassical electron transfer: An efficient electrochemical Wolff rearrangement of alpha-diazoketones. European Journal of Chemistry, 12, 859–864.
Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. Physica Status Solidi, 15, 627–637.
Tju, H., Shabrany, H., Taufik, A., & Saleh, R. (2017). Degradation of methylene blue (MB) using ZnO/CeO2/nanographene platelets (NGP) photocatalyst: Effect of various concentration of NGP. AIP Conference Proceedings, 1862, 030037.
Wang, Y. J., Shi, R., Lin, J., & Zhu, Y. F. (2011). Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy & Environmental Science, 4, 2922–2929.
Williams, D. (2008). The relationship between biomaterials and nanotechnology. Biomaterials, 29, 1737–1738.