Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tre kiến trúc xanh, bền vững với tính truyền sáng cao và khả năng che chắn điện từ tuyệt vời như một ứng cử viên cho các tòa nhà tiết kiệm năng lượng
Tóm tắt
Hiện nay, các vật liệu truyền sáng, tiết kiệm năng lượng và che chắn điện từ đóng vai trò thiết yếu trong việc giảm thiểu tiêu thụ năng lượng trong nhà và cải thiện môi trường điện từ. Bài báo này trình bày việc phát triển một composite cellulose với khả năng truyền sáng quang học xuất sắc, vẫn giữ được hình dạng tự nhiên và cấu trúc sợi của tre. Tre nguyên liệu đã được cải tiến sở hữu khả năng truyền sáng quang học ấn tượng khoảng 60% tại 6,23 mm, độ sáng 1000 lux, độ ổn định hấp thụ nước (tỷ lệ thay đổi khối lượng dưới 4%), độ bền kéo dọc (46,40 MPa) và đặc tính bề mặt (80,2 HD). Những điều này được cho là nhờ vào việc giữ lại cấu trúc rỗng hình tròn tự nhiên của thân tre ở quy mô vĩ mô, cũng như mẫu khuôn xương tre hoàn chỉnh được ngâm trong nhựa UV ở quy mô vi mô. Hơn nữa, một thiết bị nhiều lớp gồm tre nguyên liệu bán trong suốt, tấm tre trong suốt và phim che chắn điện từ thể hiện hiệu suất cách nhiệt đáng kể và hiệu suất bảo quản nhiệt cũng như khả năng che chắn điện từ đạt 46,3 dB. Sự kết hợp giữa khả năng truyền sáng quang học ấn tượng, các tính chất cơ học, hiệu suất nhiệt, và khả năng che chắn điện từ, cùng với tính chất tái tạo và bền vững, cũng như quy trình sản xuất nhanh chóng và hiệu quả, khiến cho vật liệu composite tre này phù hợp cho việc ứng dụng hiệu quả trong các tòa nhà trong suốt, tiết kiệm năng lượng và che chắn điện từ.
Từ khóa
#tre bền vững #vật liệu che chắn điện từ #tiết kiệm năng lượng #truyền sáng quang học #kiến trúc xanhTài liệu tham khảo
C.Y. Zhang, J.L. Mo, Q. Fu, Y.H. Liu, S.F. Wang et al., Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy 81, 105637 (2021). https://doi.org/10.1016/j.nanoen.2020.105637
Y.G. Yao, J.S. Tao, J.H. Zou, B.L. Zhang, T. Li et al., Light management in plastic-paper hybrid substrate towards high-performance optoelectronics. Energy Environ. Sci. 9(7), 2278–2285 (2016). https://doi.org/10.1039/C6EE01011C
Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12, 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
J.L. Huang, B.T. Zhao, T. Liu, J.R. Mou, Z.J. Jiang et al., Wood-derived materials for advanced electrochemical energy storage devices. Adv. Funct. Mater. 29(31), 1902255 (2019). https://doi.org/10.1002/adfm.201902255
S. Zhu, S. Kumar Biswas, Z. Qiu, Y. Yue, Q. Fu et al., Transparent wood-based functional materials via a top-down approach. Prog Mater Sci 132,101025 (2023). https://doi.org/10.1016/j.pmatsci.2022.101025
G.G. Chen, T. Li, C.J. Chen, C.W. Wang, Y. Liu et al., A highly conductive cationic wood membrane. Adv. Funct. Mater. 29(44), 1902772 (2019). https://doi.org/10.1002/adfm.201902772
Q. Fu, M. Yan, E. Jungstedt, X. Yang, Y. Li et al., Transparent plywood as a load-bearing and luminescent biocomposite. Compos. Sci. Technol. 164, 296–303 (2018). https://doi.org/10.1016/j.compscitech.2018.06.001
E. Wohl, K. Dwire, N. Sutfin, L. Polvi, R. Bazan, Mechanisms of carbon storage in mountainous headwater rivers. Nat. Commun. 3, 1263 (2012). https://doi.org/10.1038/ncomms2274
Z.C. Lou, Q.Y. Wang, U.I. Kara, R.S. Mamtani, X.D. Zhou et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 14, 11 (2022). https://doi.org/10.1007/s40820-021-00750-z
M. Wang, R.N. Li, G.X. Chen, S.H. Zhou, X. Feng et al., Highly stretchable, transparent, and conductive wood fabricated by in situ photopolymerization with polymerizable deep eutectic solvents. ACS Appl. Mater. Interf. 11(15), 14313–14321 (2019). https://doi.org/10.1021/acsami.9b00728
S.M. Tao, C.Z. Zhang, Y. Chen, S.L. Qin, H.S. Qi, High strength holocellulose paper from bamboo as biodegradable packaging tape. Carbohyd. Polym. 283, 119151 (2022). https://doi.org/10.1016/j.carbpol.2022.119151
Y.C. Hu, F.Q. Hu, M.X. Gan, Y.M. Xie, Q.H. Feng, Facile one-step fabrication of all cellulose composites with unique optical performance from wood and bamboo pulp. Carbohyd. Polym. 274, 118630 (2021). https://doi.org/10.1016/j.carbpol.2021.118630
G. Dinesh, B. Kandasubramanian, Fabrication of transparent paper devices from nanocellulose fiber. Mater. Chem. Phys. 281, 125707 (2022). https://doi.org/10.1016/j.matchemphys.2022.125707
L. Zheng, Y.F. Zuo, X.G. Li, Y.Q. Wu, Biomimetic swallow nest structure: a lightweight and high-strength thermal insulation material. ACS Nano 16(5), 8116–8127 (2022). https://doi.org/10.1021/acsnano.2c01451
H. Sun, H.J. Bi, Z.C. Ren, X.Y. Zhou, T. Ji et al., Hydrostable reconstructed wood with transparency, excellent ultraviolet-blocking performance, and photothermal conversion ability. Compos. Part B Eng. 232, 109615 (2022). https://doi.org/10.1016/j.compositesb.2022.109615
X. Wang, T. Zhan, Y. Liu, J. Shi, B. Pan et al., Large-size transparent wood for energy-saving building applications. Chemsuschem 11(23), 4086–4093 (2018). https://doi.org/10.1002/cssc.201801826
C. Jia, C. Chen, R. Mi, T. Li, J. Dai et al., Clear wood toward high-performance building materials. ACS Nano 13(9), 9993–10001 (2019). https://doi.org/10.1021/acsnano.9b00089
X. Wang, S. Shan, S.Q. Shi, Y. Zhang, L. Cai et al., Optically transparent bamboo with high strength and low thermal conductivity. ACS Appl. Mater. Interf. 13(1), 1662–1669 (2021). https://doi.org/10.1021/acsami.0c21245
C.Z. Zhou, I. Julianri, S.C. Wang, S.H. Chan, M. Li et al., Transparent bamboo with high radiative cooling targeting energy savings. ACS Mater. Lett. 3(6), 883–888 (2021). https://doi.org/10.1021/acsmaterialslett.1c00272
J.W. Tong, X. Wang, B.B. Kuai, J.S. Gao, Y.L. Zhang et al., Development of transparent composites using wheat straw fibers for light-transmitting building applications. Ind. Crop. Prod. 170, 113685 (2021). https://doi.org/10.1016/j.indcrop.2021.113685
J. Gan, Y. Wu, F. Yang, H.Q. Zhang, X.Y. Wu et al., Wood-cellulose photoluminescence material based on carbon quantum dot for light conversion. Carbohyd. Polym. 290, 119429 (2022). https://doi.org/10.1016/j.carbpol.2022.119429
W. Gan, S. Xiao, L. Gao, R. Gao, J. Li et al., Luminescent and transparent wood composites fabricated by poly (methyl methacrylate) and gamma-Fe2O3@YVO4:Eu3+ nanoparticle impregnation. ACS Sustain. Chem. Eng. 5(5), 3855–3862 (2017). https://doi.org/10.1021/acssuschemeng.6b02985
R. Mi, C. Chen, T. Keplinger, Y. Pei, S. He et al., Scalable aesthetic transparent wood for energy efficient buildings. Nat. Commun. 11, 3836 (2020). https://doi.org/10.1038/s41467-020-17513-w
Y.J. Wang, Y. Wu, F. Yang, L.C. Yang, J.X. Wang et al., A highly transparent compressed wood prepared by cell wall densification. Wood Sci. Technol. 56(2), 669–686 (2022). https://doi.org/10.1007/s00226-022-01372-3
Y. Li, Q. Fu, S. Yu, M. Yan, L. Berglund, Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromol 17(4), 1358–1364 (2016). https://doi.org/10.1021/acs.biomac.6b00145
M. Zhu, J. Song, T. Li, A. Gong, Y. Wang et al., Highly anisotropic, highly transparent wood composites. Adv. Mater. 28(35), 7563–7563 (2016). https://doi.org/10.1002/adma.201604084
M. Zhu, T. Li, C.S. Davis, Y. Yao, J. Dai et al., Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26, 332–339 (2016). https://doi.org/10.1016/j.nanoen.2016.05.020
C.X. Huang, Z.W. Peng, J.J. Li, X.N. Li, X. Jiang et al., Unlocking the role of lignin for preparing the lignin-based wood adhesive: a review. Ind. Crops Prod. 187, 115388 (2022). https://doi.org/10.1016/j.indcrop.2022.115388
Y. Wu, J.C. Zhou, Q.T. Huang, F. Yang, Y.J. Wang et al., Study on the properties of partially transparent wood under different delignification processes. Polymers 12(3), 661 (2020). https://doi.org/10.3390/polym12030661
Y. Wu, J.C. Zhou, Q.T. Huang, F. Yang, Y.J. Wang et al., Study on the colorimetry properties of transparent wood prepared from six wood species. ACS Omega 5(4), 1782–1788 (2020). https://doi.org/10.1021/acsomega.9b02498
Y.J. Wang, Y. Wu, F. Yang, J. Wang, J.C. Zhou, A multilayer transparent wood prepared by laminating two kinds of tree species. J. Appl. Polym. Sci. 139(13), e51872 (2022). https://doi.org/10.1002/app.51872
J.C. Zhou, W. Xu, Toward interface optimization of transparent wood with wood color and texture by silane coupling agent. J. Mater. Sci. 57, 5825–5838 (2022). https://doi.org/10.1007/s10853-022-06974-7
J.K. Qin, X.W. Li, Y.L. Shao, K.X. Shi, X. Zhao et al., Optimization of delignification process for efficient preparation of transparent wood with high strength and high transmittance. Vacuum 158, 158–165 (2018). https://doi.org/10.1016/j.vacuum.2018.09.058
H. Chen, A. Baitenov, Y. Li, E. Vasileva, S. Popov et al., Thickness dependence of optical transmittance of transparent wood: chemical modification effects. ACS Appl. Mater. Interfaces 11(38), 35451–35457 (2019). https://doi.org/10.1021/acsami.9b11816
R. Mi, T. Li, D. Dalgo, C. Chen, Y. Kuang et al., A clear, strong, and thermally insulated transparent wood for energy efficient windows. Adv. Funct. Mater. 30(1), 1907511 (2020). https://doi.org/10.1002/adfm.201907511
M. Frey, D. Widner, J.S. Segmehl, K. Casdorff, T. Keplinger et al., Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl. Mater. Interfaces 10(5), 5030–5037 (2018). https://doi.org/10.1021/acsami.7b18646
H.Y. Li, X.L. Guo, Y.M. He, R.B. Zheng, A green steam-modified delignification method to prepare low-lignin delignified wood for thick, large highly transparent wood composites. J. Mater. Res. 34(6), 932–940 (2019). https://doi.org/10.1557/jmr.2018.466
J.Y. Wu, T.H. Zhong, W.F. Zhang, J.J. Shi, B.H. Fei et al., Comparison of colors, microstructure, chemical composition and thermal properties of bamboo fibers and parenchyma cells with heat treatment. J. Wood Sci. 67(1), 56 (2021). https://doi.org/10.1186/s10086-021-01988-2
H. Chen, J.Y. Wu, J.J. Shi, W.F. Zhang, G. Wang, Strong and highly flexible slivers prepared from natural bamboo culm using NaOH pretreatment. Ind. Crop. Prod. 170, 113773 (2021). https://doi.org/10.1016/j.indcrop.2021.113773
W. Lin, J. Yang, Y. Zheng, C. Huang, Q. Yong, Understanding the effects of different residual lignin fractions in acid-pretreated bamboo residues on its enzymatic digestibility. Biotechn. Biofuels 14(1), 143 (2021) https://doi.org/10.1186/s13068-021-01994-y
L.V. Hai, R.M. Muthoka, P.S. Panicker, D.O. Agumba, H.D. Pham et al., All-biobased transparent-wood: a new approach and its environmental-friendly packaging application. Carbohyd. Polym. 264, 118012 (2021). https://doi.org/10.1016/j.carbpol.2021.118012
Z.H. Li, C.J. Chen, H. Xie, Y. Yao, X. Zhang et al., Sustainable high-strength macrofibres extracted from natural bamboo. Nat. Sustain. 5(3), 235 (2022). https://doi.org/10.1038/s41893-021-00831-2
C. Chen, Z. Li, R. Mi, J. Dai, L. Hu, Rapid processing of whole bamboo with exposed, aligned nanofibrils toward a high-performance structural material. ACS Nano 14(5), 5194–5202 (2020). https://doi.org/10.1021/acsnano.9b08747
H. Chen, J.Y. Wu, J.J. Shi, W.F. Zhang, H.K. Wang, Effect of alkali treatment on microstructure and thermal stability of parenchyma cell compared with bamboo fiber. Ind. Crop. Prod. 164, 113380 (2021). https://doi.org/10.1016/j.indcrop.2021.113380
Y. Wu, J. Wang, Y.J. Wang, J.C. Zhou, Properties of multilayer transparent bamboo materials. ACS Omega 6(49), 33747–33756 (2021). https://doi.org/10.1021/acsomega.1c05014
J. Wang, Y.J. Wang, Y. Wu, W.Y. Zhao, A multilayer transparent bamboo with good optical properties and UV shielding prepared by different lamination methods. ACS Sustain. Chem. Eng. 10(18), 6106–6116 (2022). https://doi.org/10.1021/acssuschemeng.2c01719
F.Y. Wang, Y.L. Liu, H.H. Zhao, L. Cui, L.R. Gai et al., Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem. Eng. J. 450, 138160 (2022). https://doi.org/10.1016/j.cej.2022.138160
G.H. Wang, Y. Zhao, F. Yang, Y. Zhang, M. Zhou et al., Multifunctional integrated transparent film for efficient electromagnetic protection. Nano-Micro Lett. 14, 65 (2022). https://doi.org/10.1007/s40820-022-00810-y
Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, G.L. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32(34), 2204499 (2022). https://doi.org/10.1002/adfm.202204499
Z.R. Jia, M.Y. Kong, B.W. Yu, Y.Z. Ma, J.Y. Pan et al., Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. J. Mater. Sci. Technol. 127, 153–163 (2022). https://doi.org/10.1016/j.jmst.2022.04.005
W.H. Gu, S.J.H. Ong, Y.H. Shen, W.Y. Guo, Y.T. Fang et al., A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. (2022). https://doi.org/10.1002/advs.202204165
Y. Wu, Y. Zhao, M. Zhou, S.J. Tan, R. Peymanfar et al., The ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
J.K. Liu, Z.R. Jia, Y.H. Dong, J.J. Li, X.L. Cao et al., Structural engineering and compositional manipulation for high-efficiency electromagnetic microwave absorption. Mater. Today Phys. 27, 100801 (2022). https://doi.org/10.1016/j.mtphys.2022.100801
Y. Liu, Z.R. Jia, J.X. Zhou, G.L. Wu, Multi-hierarchy heterostructure assembling on MnO2 nanowires for optimized electromagnetic response. Mater. Today Phys. 28, 100845 (2022). https://doi.org/10.1016/j.mtphys.2022.100845
H.F. Pang, Y.P. Duan, L.X. Huang, L.L. Song, J. Liu et al., Research advances in composition, structure and mechanisms of microwave absorbing materials. Compos. Part B Eng. 224, 109173 (2021). https://doi.org/10.1016/j.compositesb.2021.109173
X.T. Chen, M. Zhou, Y. Zhao, W.H. Gu, Y. Wu et al., Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chem. 24(13), 5280–5290 (2022). https://doi.org/10.1039/D2GC01604D
Y.P. Duan, H.F. Pang, X. Wen, X.F. Zhang, T.M. Wang, Microwave absorption performance of FeCoNiAlCr0.9 alloy powders by adjusting the amount of process control agent. J. Mater. Sci. Technol. 77, 209–216 (2021). https://doi.org/10.1016/j.jmst.2020.09.049
X.J. Liu, Y.P. Duan, Y. Guo, H.F. Pang, Z.R. Li et al., Microstructure design of high-entropy alloys through a multistage mechanical alloying strategy for temperature-stable megahertz electromagnetic absorption. Nano-Micro Lett. 14, 142 (2022). https://doi.org/10.1007/s40820-022-00886-6
J.Y. Liu, Y.P. Duan, T. Zhang, L.X. Huang, H.F. Pang, Dual-polarized and real-time reconfigurable metasurface absorber with infrared-coded remote-control system. Nano Res. 15(8), 7498–7505 (2022). https://doi.org/10.1007/s12274-022-4528-7
J.S. Gao, X. Wang, J.W. Tong, B.B. Kuai, Z.H. Wang et al., Large size translucent wood fiber reinforced PMMA porous composites with excellent thermal, acoustic and energy absorption properties. Compos. Commun. 30, 101059 (2022). https://doi.org/10.1016/j.coco.2022.101059
M. Zhu, C. Jia, Y. Wang, Z. Fang, J. Dai et al., Isotropic paper directly from anisotropic wood: top-down green transparent substrate toward biodegradable electronics. ACS Appl. Mater. Interfaces 10(34), 28566–28571 (2018). https://doi.org/10.1021/acsami.8b08055
Z. Bi, T. Li, H. Su, Y. Ni, L. Yan, Transparent wood film incorporating carbon dots as encapsulating material for white light-emitting diodes. ACS Sustain. Chem. Eng. 6(7), 9314–9323 (2018). https://doi.org/10.1021/acssuschemeng.8b01618
C.P. Lian, R. Liu, S.Q. Zhang, J. Yuan, J.J. Luo et al., Ultrastructure of parenchyma cell wall in bamboo (phyllostachys edulis) culms. Cellulose 27(13), 7321–7329 (2020). https://doi.org/10.1007/s10570-020-03265-9
K.L. Wang, H.Z. Peng, Q.Y. Gu, X.Z. Zhang, X.R. Liu et al., Scalable, large-size, and flexible transparent bamboo. Chem. Eng. J. 451, 138349 (2022). https://doi.org/10.1016/j.cej.2022.138349
Y.M. Zhang, Y.L. Yu, Y. Lu, W.J. Yu, S.Q. Wang, Effects of heat treatment on surface physicochemical properties and sorption behavior of bamboo (phyllostachys edulis). Constr. Build. Mater. 282, 122683 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122683
Z.Y. Zhao, X. Zhang, Q.M. Lin, N. Zhu, C.S. Gui et al., Development and investigation of a two-component adhesive composed of soybean flour and sugar solution for plywood manufacturing. Wood Mater. Sci. Eng. (2022). https://doi.org/10.1080/17480272.2022.2086067
X.M. Guan, Z.H. Yang, M. Zhou, L. Yang, R. Peymanfar et al., 2D MXene nanomaterials: synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 3(10), 2200102 (2022). https://doi.org/10.1002/sstr.202200102
X.D. Zhou, B. Zhao, H.L. Lv, Low-dimensional cobalt doped carbon composite toward electromagnetic dissipation. Nano Res. (2022). https://doi.org/10.1007/s12274-022-4950-x
L.X. Gai, H.H. Zhao, F.Y. Wang, P. Wang, Y.L. Liu et al., Advances in core-shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res. 15(10), 9410–9439 (2022). https://doi.org/10.1007/s12274-022-4695-6
H.H. Zhao, F.Y. Wang, L.R. Cui, X.Z. Xu, X.J. Han et al., Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett. 13, 208 (2021). https://doi.org/10.1007/s40820-021-00734-z
F.Y. Wang, P. Xu, N. Shi, L.R. Cui, Y.H. Wang et al., Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution. J. Mater. Sci. Technol. 93, 7–16 (2021). https://doi.org/10.1016/j.jmst.2021.03.048
Y. Liu, X. Wang, Q. Wu, W. Pei, M. Teo et al., Application of lignin and lignin-based composites in different tissue engineering fields. Int J Biolog Macromolecules 222, 994–1006 (2022). https://doi.org/10.1016/j.ijbiomac.2022.09.267