Green Polymer Chemistry and Bio‐based Plastics: Dreams and Reality

Macromolecular Chemistry and Physics - Tập 214 Số 2 - Trang 159-174 - 2013
Rolf Mülhaupt1
1Freiburg Materials Research Center and Institute for Macromolecular Chemistry of the University of Freiburg, Stefan‐Meier‐Str. 31, 79104 Freiburg, Germany

Tóm tắt

Abstract

Dwindling fossil resources, surging energy demand and global warming stimulate growing demand for renewable polymer products with low carbon footprint. Going well beyond the limited scope of natural polymers, biomass conversion in biorefineries and chemical carbon dioxide fixation are teamed up with highly effective tailoring, processing and recycling of polymers. “Green monomers” from biorefineries, and “renewable oil”, gained from plastics' and bio wastes, render synthetic polymers renewable without impairing their property profiles and recycling. In context of biofuel production, limitations of the green economy concepts are clearly visible. Dreams and reality of “green polymers” are highlighted. Regardless of their new greenish touch, highly versatile and cost‐effective polymers play an essential role in sustainable development.

Từ khóa


Tài liệu tham khảo

10.1002/anie.200330070

10.1002/macp.200900569

10.1002/anie.200460587

10.1002/9783527634026

10.1002/ciuz.201000514

10.1002/0471721557

10.1098/rstb.2009.0053

Barnosky A. D., 2012, Nat. Rev., 486, 52

Meadows D., 2004, Limits of Growth–The 30 Years Update

10.1126/science.1114736

General Assembly Resolution 42/187 “Report of the World Commission on Environment and Development” United Nations General Assembly 96thplenary meeting 11thDecember 1987).

Anastas P. T., 1998, Green Chemistry. Theory and Practice

10.3139/9783446413030

Pasquini N., 2005, Polypropylene Handbook

http://en.wikipedia.org/wiki/Great_Pacific_Garbadge_Patch accessed July 11 2012

10.1016/j.marpolbul.2006.11.019

Sinn H. W., 2012, The Green Paradoxon–A Supply–Side Approach to Global Warming, 113, 10.7551/mitpress/8734.001.0001

10.1126/science.1152747

http://www.unendlich‐viel‐energie.de/de/bioenergie/detailansicht/article/105/potenziale‐der‐bioenergie.html accessed July 15 2012.

10.1002/anie.200801476

10.1002/cssc.200800253

10.1080/15583720902834791

Odenwald M., 2011, Focus, 41, 127

10.1039/b616045j

10.1002/anie.201201847

10.1002/9783527629916

Belgacem M. N., 2008, Monomers, Polymers and Composites from Renewable Resources

10.1021/ma801735u

Mittal V., 2012, Renewable Polymers

Rieger B., 2012, Adv. Polym. Sci.

10.1002/marc.201100230

10.1002/mame.200600113

10.1016/j.biortech.2007.09.043

10.1002/anie.201001273

J. E.Holladay J. J.Bozell J. F.White D.Johnson Top Value‐Added Chemicals from Biomass Volume II ‐ Results of Screening for Potential Candidates from Biorefinery Lignin Report of the Pacific Northwest National Laboratory prepared for the U.S. Department of Energy under Contract DE‐AC05‐76RL01830 October 2007.

http://www.tecnaro.de accessed July 15 2012.

10.1002/9783527628216

http://www.cardiabioplastics.com accessed July 15 2012.

K. O.Siegenthaler A.Künkel G.Skupin M.Yamamoto in [30] p.91.

10.1016/S1381-5148(00)00038-9

Kurian T., 2011, Biopolymers: Biomedical and Environmental Applications

10.1038/nbt0295-142

R.Reichardt B.Rieger in [30] p.49.

10.1002/anie.200301655

10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E

http://www.natureworksllc.com accessed July 15 2012.

http://www.thecoca‐colacompany.com/dynamic/press_center/2011/12/plantbottle‐partnerships.html accessed July 15 2012.

http://www.braskem.com.br/plasticoverde/eng/braskem.html accessed July 15 2012.

10.1021/ol026189w

10.1021/ie020678i

10.1016/S0300-9440(03)00074-2

http://www.nanotechindustriesinc.com/GPU.php accessed July 15 2012

10.1021/ja028071g

10.1021/cr068363q

10.1002/marc.200390022

10.1080/15583720701834240

10.1021/ja0472580

10.1038/ncomms1596

10.1039/c2gc35099h

Tolinski M., 2012, Plastics and Sustainability