Green Function Estimates and Harnack Inequality for Subordinate Brownian Motions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Barlow, M.T.: Diffusions on fractals, in Lecture Notes on probability theory and Statistics, École d’ Été de Probabilités de Saint-Flour XXV – 1995, Lect. Notes Math. 1690, Springer, 1998, pp. 1–121.
Bass, R.F. and Kassmann, M.: ‘Harnack inequalities for non-local operators of variable order’, Trans. Amer. Math. Soc. 357 (2005), 837–850.
Bass, R.F. and Levin, D.A.: ‘Harnack inequalities for jump processes’, Potential Anal. 17 (2002), 375–388.
Bass, R.F. and Levin, D.A.: ‘Transition probabilities for symmetric jump processes’, Trans. Amer. Math. Soc. 354 (2002), 2933–2953.
Bertoin, J.: Lévy Processes, Cambridge University Press, Cambridge, 1996.
Bingham, N.H., Goldie, C.M. and Teugels, J.L.: Regular Variation, Cambridge University Press, Cambridge, 1987.
Bogdan, K., Stós, A. and Sztonyk, P.: ‘Potential theory for Lévy stable processes’, Bull. Pol. Acad. Sci., Math. 50 (2002), 361–372.
Chen, Z.-Q. and Kumagai, T.: ‘Heat kernel estimates for stable-like processes on d-sets’, Stoch. Process. Appl. 108 (2003), 27–62.
Chen, Z.-Q. and Song, R.: ‘Drift transform and Green function estimates for discontinuous processes’, J. Funct. Anal. 201 (2003), 262–281.
Geman, H., Madan, D.B. and Yor, M.: ‘Time changes for Lévy processes’, Math. Finance 11 (2001), 79–96.
Jacob, N.: Pseudo Differential Operators and Markov Processes, Vol. 1, Imperial College Press, London, 2001.
Jacob, N. and Schilling, R.L.: ‘Some Dirichlet spaces obtained by subordinate reflected diffusions’, Rev. Mat. Iberoamericana 15 (1999), 59–91.
Krylov, N.V. and Safonov, M.V.: ‘An estimate of the probability that a diffusion process hits a set of positive measure’, Sov. Math. Dokl. 20 (1979), 253–255.
Kumagai, T.: Some remarks for stable-like jump processes on fractals, in P. Grabner and W. Woess (eds), Trends in Math., Fractals in Graz 2001, Birkhäuser, Basel, 2002, pp. 185–196.
Riesz, M.: ‘Integrals de Riemann–Liouville et potentiels’, Acta Szeged 9 (1938), 1–42.
Ryznar, M.: ‘Estimates of Green functions for relativistic α-stable process’, Potential Anal. 17 (2002), 1–23.
Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999.
Schilling, R.L.: Zum Pfadenverhalten vom Markovschen Prozessen, die mit Lévy–Prozessen vergleichbar sind, Dissertation Universität Erlangen–Nürnberg, Erlangen, 1994.
Selmi, M.: ‘Comparison des semi-groupes et des résolvantes d’ordre α associés à des opérateurs différentiels de type divergence’, Potential Anal. 3 (1994), 15–45.
Song, R.: ‘Sharp bounds on the density, Green function and jumping function of subordinate killed BM’, Probab. Theory Related Fields 128 (2004), 606–628.
Song, R. and Vondraček, Z.: ‘Potential theory of subordinate killed Brownian motion in a domain’, Probab. Theory Related Fields 125 (2003), 578–592.
Song, R. and Vondraček, Z.: ‘Harnack inequalities for some classes of Markov processes’, Math. Z. 246 (2004), 177–202.
Song, R. and Vondraček, Z.: ‘Harnack inequality for some discontinuous Markov processes with a diffusion part, Glas. Mat. 40 (2005), 177–187.
Stós, A.: ‘Symmetric α-stable processes on d-sets’, Bull. Pol. Acad. Sci. Math. 48 (2000), 237–245.
Vondraček, Z.: ‘Basic potential theory of certain nonsymmetric strictly α-stable processes’, Glas. Mat. 37 (2002), 193–215.