Green Biosynthesis of Silver Nanoparticle Using Garlic, Allium sativum with Reference to Its Antimicrobial Activity Against the Pathogenic Strain of Bacillus sp. and Pseudomonas sp. Infecting Goldfish, Carassius auratus
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adetumbi, M., G.T. Javor, and B.H. Lau. 1986. Allium sativum (garlic) inhibits lipid synthesis by Candida albicans. Antimicrobial Agents and Chemotherapy 30: 499–501.
Austin, B., and D.A. Austin. 1993. Bacterial fish pathogens. In Diseases of farmed and wildfish, 2nd ed, ed. S. Schuster Chichester, 111–117. Berlin: Springer.
Baker, J.T., R.P. Borris, B. Carte, G.A. Cordell, D.D. Soejarto, G.M. Cragg, M.P. Gupta, M.M. Iwu, D.R. Madulid, and V.E. Tyler. 1995. Natural product drug discovery and development: New perspective on international collaboration. Journal of Natural Products 58: 1325–1357.
Balamanikandan, T., S. Balaji, and J. Pandiarajan. 2015. Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial and antifungal activity. World Applied Sciences Journal 33 (6): 939–943.
Buszewski, B., V.R. Plugaru, P. Pomastowski, K. Rafinska, M. Szultka-Mlynska, P. Golinska, M. Wypij, D. Laskowski, and H. Dahm. 2016. Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. Journal of Microbiology, Immunology, and Infection. https://doi.org/10.1016/j.jmii.2016.03.002 .
Caruana, S., G.H. Yoon, M.A. Freeman, J.A. Mackie, and A.P. Shinn. 2012. The efficacy of selected plant extracts and bioflavonoids in controlling infections of Saprolegnia australis (saprolegniales; oomycetes). Aquaculture 358: 146–154.
Citarasu, T., M.M. Babu, R.J.R. Sekar, and P.M. Marian. 2002. Developing artemia enriched herbal diet for producing quality larvae in Penaeus monodon fabricius. Asian Fisheries Sciences 15: 21–32.
El Deen, A.I.N., and A.M. Razin. 2009. Application of some medicinal Plants to eliminate Trichodina sp. in tilapia (Oreochromis niloticus). Report Opinion Journal 1 (6): 1–5.
European Commission. 2008. Background information on the consultation process on monitoring International Trade in Ornamental Fish, http://www.ornamental-fishint.org/uploads/M6/Q6/M6Q6bR8R4fxaZ8fa0nJqjA/UNEP-WCMC-Background.pdf . Accessed 18 July 2012.
Geethalakshmi, R., and D.V.L. Sarada. 2012. Gold and silver nanoparticles from Trianthema decandra: Synthesis, characterization, and antimicrobial properties. International Journal of Nanomedicine 7: 5375–5384.
Ghorbani, H.R., and S. Soltani. 2015. Antibacterial effects of silver nanoparticles on Escherichia coli and Bacillus subtilis. Oriental Journal of Chemistry 31 (1): 341–344.
Ghosh, S., Saha, M., P.K. Bandyopadhyay, and M. Jana. 2017. Extraction, isolation and characterization of bioactive compounds from chloroform extract of Carica papaya seed and it’s in vivo antibacterial potentiality in Channa punctatus against Klebsiella PKBSG14. Microbial Pathogenesis 111:508–518. doi: https://doi.org/10.1016/j.micpath.2017.08.033 .
Harris, J.C., S.L. Cottrell, S. Plummer, and D. Lloyd. 2001. Antimicrobial properties of Allium sativum (garlic). Applied Microbiology and Biotechnology 57: 282–286.
Kathireswari, P., S. Gomathi, and K. Saminathan. 2014. Plant leaf mediated synthesis of silver nanoparticles using Phyllanthus niruri and its antimicrobial activity against multi drug resistant human pathogens. International Journal of Current Microbiology and Applied Sciences 3 (3): 960–968.
Krupa, A.N.D., and V. Raghavan. 2014. Biosynthesis of silver nanoparticles using Aegle marmelos (Bael) fruit extract and its application to prevent adhesion of bacteria: A strategy to control microfouling. Bioinorganic Chemistry and Applications. https://doi.org/10.1155/2014/949538 .
Mikail, H.G. 2010. Phytochemical screening, elemental analysis and acute toxicity of aqueous extract of Allium sativum L. bulbs in experimental rabbits. Journal of Medicinal Plants Research 4: 322–326.
Novotny, L., L. Dovorska, A. Lorenkova, V. Beran, and I. Pavlik. 2004. Fish: A potential source of bacterial pathogens for human beings. Veterinary Medicine in Czech 49 (9): 343–358.
Patil, S.V., H.P. Borase, C.D. Patil, and B.K. Salunke. 2012. Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Applied Biochemistry and Biotechnology 167: 776–790.
Raja, S., V. Ramesh, and V. Thivaharan. 2017. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arabian Journal of Chemistry 10: 253–261.
Rastogi, L., and J. Arunachalam. 2011. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Materials Chemistry and Physics 129: 558–563.
Ress, L.P., S.F. Minney, N.J. Plummer, J.H. Slatter, and D.A. Skyrme. 1993. A quantitative assessment of the antimicrobial activity of garlic (Allium sativum). World Journal of Microbiology & Biotechnology 9: 303–307.
Saha, M., and P.K. Bandyopadhyay. 2017. Phytochemical screening for identification of bioactive compound and antiprotozoan activity of fresh garlic bulb over trichodinid ciliates affecting ornamental goldfish. Aquaculture 473: 181–190.
Saha, M., Mondal, S., and P.K. Bandyopadhyay. 2017. In- vitro efficacy of phytochemicals against Trichodinid ciliates infecting ornamental goldfish, Carassius auratus. International Journal of Pharma and Biosciences 8(1):(B) 196–201.
Shankar, S.S., A. Ahmad, R. Parsricha, and M. Sastry. 2003. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Materials Chemistry 13: 1822.
Shankar, S.S., A. Rai, A. Ahmad, and M. Sastry. 2004. Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science 275: 496–502.
Sondi, I., and B. Salopek-Sondi. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science 275: 177–182.
Stuffness, M., and J. Douros. 1982. Current status of the NCI plant and animal product programme. Journal of Natural Products 45: 1–14.
Suman, T.Y., S.R.R. Rajasree, A. Kanchana, and S.B. Elizabeth. 2013. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids and Surfaces B: Biointerfaces 106: 74–78.
Tamboli, D.P., and D.S. Lee. 2013. Mechanistic antimicrobial approach of extracellularly synthesised silver nanoparticles against gram positive and gram negative bacteria. Journal of Hazardous Materials 260: 878–884.
Vijayakumar, M., K. Priya, F.T. Nancy, A. Noorlidah, and A.B.A. Ahmed. 2013. Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Industrial Crops and Products 41: 235–240.