Green 3-step synthesis of bioactive wollastonite from industrial wastes: effects of sintering temperature, sintering time and milling time
Tóm tắt
In recent years, environmental problems arising from the gradual depletion of natural resources and the rapid increase in waste generation have brought recycling and waste management into focus. Since wollastonite (CaSiO3) as a calcium silicate ceramic is a bioactive material used in various fields, its synthetic production attracts attention. Therefore, the present study aims to produce bioactive wollastonite from marble and quartz wastes as industrial wastes with a 3-step technique from the green perspective. In addition, the effects of production parameters including sintering temperature (900 1000, 1100, 1200, and 1300°C), sintering time (2, 6, and 12 h), and milling time (0.5 and 12 h) on the phase and morphological structure, biocompatibility and bioactivity of the obtained synthetic wollastonite were investigated comparatively in the study. Accordingly, raw waste materials were first characterized with X-ray fluorescence (XRF), thermogravimetric analysis (TG/DTG), X-ray diffractometer (XRD), and scanning electron microscopy (SEM), respectively. TG/DTG results were used to optimize sintering temperatures of the CaO:SiO2 (with 1:1 molar ratio) aqueous mixtures. The resulting powders were also analyzed using XRD, FTIR, and SEM. Structural characterization revealed that the formation of wollastonite (CS) phases and the polymorphic transformation reaction (from β-wollastonite to α-wollastonite) are affected by sintering and milling time as well as sintering temperature. By adjusting the milling and sintering time, a high-temperature phase α-wollastonite can be synthesized at a relatively low temperature of 1000°C, when β-wollastonite begins to transform. The biocompatibility of the wollastonite powder extracts was evaluated on mouse fibroblast, L929 cell lines by MTT assay and the changing in the phase of quartz by temperature, sintering and milling resulted with increased biocompatibility of the wollastonite powders. The obtained in vitro mineralization results after soaking of the wollastonite powders for 1, 3, and 7 days in SBF proved that SW exhibited good bioactivity due to the formation of spherical-shaped carbonated hydroxyapatite.
Tài liệu tham khảo
Hossain, S.K.S., Mathur, L., Roy, P.K.: Rice husk/rice husk ash as an alternative source of silica in ceramics: A review. J. Asian Ceram. Soc. 6, 299–313 (2018). https://doi.org/10.1080/21870764.2018.1539210
Eliche-Quesada, D., Martínez-García, C., Martínez-Cartas, M.L., Cotes-Palomino, M.T., Pérez-Villarejo, L., Cruz-Pérez, N., Corpas-Iglesias, F.A.: The use of different forms of waste in the manufacture of ceramic bricks. Appl. Clay Sci. 52, 270–276 (2011). https://doi.org/10.1016/j.clay.2011.03.003
Nour, W.M.N., Mostafa, A.A., Ibrahim, D.M.: Recycled wastes as precursor for synthesizing wollastonite. Ceram. Int. 34, 101–105 (2008). https://doi.org/10.1016/j.ceramint.2006.08.019
Zareei, S.A., Ameri, F., Shoaei, P., Bahrami, N.: Recycled ceramic waste high strength concrete containing wollastonite particles and micro-silica: A comprehensive experimental study. Constr. Build. Mater. 201, 11–32 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.161
Gholampour, A., Ozbakkaloglu, T.: Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag. J. Clean. Prod. 162, 1407–1417 (2017). https://doi.org/10.1016/J.JCLEPRO.2017.06.087
Ding, L., Ning, W., Wang, Q., Shi, D., Luo, L.: Preparation and characterization of glass-ceramic foams from blast furnace slag and waste glass. Mater. Lett. 141, 327–329 (2015). https://doi.org/10.1016/J.MATLET.2014.11.122
Bayer Ozturk, Z., Eren Gultekin, E.: Preparation of ceramic wall tiling derived from blast furnace slag. Ceram. Int. 41, 12020–12026 (2015). https://doi.org/10.1016/j.ceramint.2015.06.014
Dávalos, J., Bonilla, A., Villaquirán-Caicedo, M.A., De Gutiérrez, R.M., Rincón, J.M.: Preparation of glass–ceramic materials from coal ash and rice husk ash: Microstructural, physical and mechanical properties, Boletín La Soc. Española Cerámica y Vidr. 60, 183–193 (2021). https://doi.org/10.1016/J.BSECV.2020.02.002
Zhu, M., Ji, R., Li, Z., Wang, H., Liu, L.L., Zhang, Z.: Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass. Constr. Build. Mater. 112, 398–405 (2016). https://doi.org/10.1016/J.CONBUILDMAT.2016.02.183
Luo, Y., Zheng, S., Ma, S., Liu, C., Ding, J., Wang, X.: Novel two-step process for synthesising β-SiC whiskers from coal fly ash and water glass. Ceram. Int. 44, 10585–10595 (2018). https://doi.org/10.1016/J.CERAMINT.2018.03.082
Hossain, S.S., Mathur, L., Majhi, M.R., Roy, P.K.: Manufacturing of green building brick: recycling of waste for construction purpose. J. Mater. Cycles Waste Manag. 21, 281–292 (2019). https://doi.org/10.1007/S10163-018-0788-4/FIGURES/12
Bixapathi, G., Saravanan, M.: Strength and durability of concrete using Rice Husk ash as a partial replacement of cement. Mater. Today Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.11.267
Syahida Adnan, Z., Ariffin, N.F., Syed Mohsin, S.M., Lim, N.H.A.S.: Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete. Mater. Today Proc. 48, 842–848 (2022). https://doi.org/10.1016/J.MATPR.2021.02.400
Subathra Devi, V., Gnanavel, B.K.: Properties of Concrete Manufactured Using Steel Slag. Procedia Eng. 97, 95–104 (2014). https://doi.org/10.1016/J.PROENG.2014.12.229
Shih, P.H., Wu, Z.Z., Chiang, H.L.: Characteristics of bricks made from waste steel slag. Waste Manag. 24, 1043–1047 (2004). https://doi.org/10.1016/J.WASMAN.2004.08.006
Costa, L.C.B., Nogueira, M.A., Andrade, H.D., de Carvalho, J.M.F., Elói, F., Brigolini, G.J., Peixoto, R.A.F.: Mechanical and durability performance of concretes produced with steel slag aggregate and mineral admixtures. Constr. Build. Mater. 318, 126152 (2022). https://doi.org/10.1016/J.CONBUILDMAT.2021.126152
Sutcu, M., Akkurt, S.: The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceram. Int. 35, 2625–2631 (2009). https://doi.org/10.1016/J.CERAMINT.2009.02.027
Abed, M.J., Khaleel, O.R., Fayyadh, M.M.: Effect of aluminium sulphate Al2(SO4)3 treatment on paper waste as a fine aggregate partial replacement in lightweight cement mortar. Mater. Today Proc. 42, 1152–1159 (2021). https://doi.org/10.1016/J.MATPR.2020.12.529
Martínez, C., Cotes, T., Corpas, F.A.: Recovering wastes from the paper industry: Development of ceramic materials. Fuel Process. Technol. 103, 117–124 (2012). https://doi.org/10.1016/J.FUPROC.2011.10.017
Ke, S., Wang, Y., Pan, Z., Ning, C., Zheng, S.: Recycling of polished tile waste as a main raw material in porcelain tiles. J. Clean. Prod. 115, 238–244 (2016). https://doi.org/10.1016/J.JCLEPRO.2015.12.064
Vilas Meena, R., Kumar Jain, J., Singh Chouhan, H., Mandolia, R., Beniwal, A.S.: Impact of waste ceramic tile on resistance to fire and abrasion of self-compacting concrete. Mater. Today Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.12.287
Dubale, M., Goel, G., Kalamdhad, A., Singh, L.B.: An investigation of demolished floor and wall ceramic tile waste utilization in fired brick production. Environ. Technol. Innov. 25, 102228 (2022). https://doi.org/10.1016/J.ETI.2021.102228
Sutcu, M., Alptekin, H., Erdogmus, E., Er, Y., Gencel, O.: Characteristics of fired clay bricks with waste marble powder addition as building materials. Constr. Build. Mater. 82, 1–8 (2015). https://doi.org/10.1016/J.CONBUILDMAT.2015.02.055
Oggu, A., Sai Madupu, L.N.K.: Study on properties of porous concrete incorporating aloevera and marble waste powder as a partial cement replacement. Mater. Today Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.11.595
Jarugumalli, V., Madupu, L.N.K.S.: The flow properties of SCC with marble waste powder as a partial substitute for cement. Mater. Today Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.10.047
Kalkan, Ş.O., Yavaş, A., Güler, S., Torman Kayalar, M., Sütçü, M., Gündüz, L.: An experimental approach to a cementitious lightweight composite mortar using synthetic wollastonite. Constr. Build. Mater. 341, 127911 (2022). https://doi.org/10.1016/J.CONBUILDMAT.2022.127911
Peng, L., Qin, S.: Mechanical behaviour and microstructure of an artificial stone slab prepared using a SiO2 waste crucible and quartz sand. Constr. Build. Mater. 171, 273–280 (2018). https://doi.org/10.1016/J.CONBUILDMAT.2018.03.141
Kumar, S., Gupta, R.C., Shrivastava, S.: Long term studies on the utilisation of quartz sandstone wastes in cement concrete. J. Clean. Prod. 143, 634–642 (2017). https://doi.org/10.1016/J.JCLEPRO.2016.12.062
Sadowski, Ł., Piechówka-Mielnik, M., Widziszowski, T., Gardynik, A., Mackiewicz, S.: Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust. J. Clean. Prod. 212, 727–740 (2019). https://doi.org/10.1016/J.JCLEPRO.2018.12.059
Palakurthy, S., Samudrala, R.K.: In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Mater. Sci. Eng. C. 98, 109–117 (2019). https://doi.org/10.1016/j.msec.2018.12.101
Gineika, A., Dambrauskas, T., Baltakys, K.: Synthesis and characterisation of wollastonite with aluminium and fluoride ions. Ceram. Int. 47, 22900–22910 (2021). https://doi.org/10.1016/J.CERAMINT.2021.05.003
Nair, N.A., Sairam, V.: Research initiatives on the influence of wollastonite in cement-based construction material- A review. J. Clean. Prod. 283, 124665 (2021). https://doi.org/10.1016/J.JCLEPRO.2020.124665
Chan, J.X., Wong, J.F., Hassan, A., Shrivastava, N.K., Mohamad, Z., Othman, N.: Green hydrothermal synthesis of high aspect ratio wollastonite nanofibers: Effects of reaction medium, temperature and time. Ceram. Int. 46, 22624–22634 (2020). https://doi.org/10.1016/j.ceramint.2020.06.025
González-Barros, M.R.y., García-Ten, J., Alonso-Jiménez, A.: Synthesis of wollastonite from diatomite-rich marls and its potential ceramic uses, Boletín La Soc. Española Cerámica y Vidr. (2021). https://doi.org/10.1016/j.bsecv.2021.05.002
Azmi, M., Ismail, H., Shamsudin, R., Hamid, A., Awang, R.: Characteristics of β-wollastonite derived from rice straw ash and limestone. Researchgate.Net. 52, 163–174 (2016)
Flores-Ledesma, A., Tejeda-Cruz, A., Bucio, L., Wintergerst, A.M., Rodríguez-Chávez, J.A., Moreno-Vargas, Y.A., Arenas-Alatorre, J.A.: Hydration products and bioactivity of an experimental MTA-like cement modified with wollastonite and bioactive glass. Ceram. Int. 46, 15963–15971 (2020). https://doi.org/10.1016/J.CERAMINT.2020.03.146
Liu, X., Ding, C., Chu, P.K.: Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials. 25, 1755–1761 (2004). https://doi.org/10.1016/J.BIOMATERIALS.2003.08.024
Kolçakoğlu, Ş., Özyurt, A., Üstel, F.: Evaluation of the Resistance and Bioactivity of Wollastonite and Hydroxyapatite Coated Zirconia Dental Implant Material. Turkiye Klin. J. Dent. Sci. 26, 331–347 (2020). https://doi.org/10.5336/dentalsci.2019-72514
Magallanes-Perdomo, M., Luklinska, Z.B., De Aza, A.H., Carrodeguas, R.G., De Aza, S., Pena, P.: Bone-like forming ability of apatite–wollastonite glass ceramic. J. Eur. Ceram. Soc. 31, 1549–1561 (2011). https://doi.org/10.1016/J.JEURCERAMSOC.2011.03.007
Kunjalukkal Padmanabhan, S., Gervaso, F., Carrozzo, M., Scalera, F., Sannino, A., Licciulli, A.: Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering. Ceram. Int. 39, 619–627 (2013). https://doi.org/10.1016/j.ceramint.2012.06.073
Azeena, S., Subhapradha, N., Selvamurugan, N., Narayan, S., Srinivasan, N., Murugesan, R., Chung, T.W., Moorthi, A.: Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering. Mater. Sci. Eng. C. 71, 1156–1165 (2017). https://doi.org/10.1016/J.MSEC.2016.11.118
Gao, C., Peng, S., Feng, P., Shuai, C.: Bone biomaterials and interactions with stem cells. Bone Res. 51(5), 1–33 (2017). https://doi.org/10.1038/boneres.2017.59
Gao, C., Feng, P., Peng, S., Shuai, C.: Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomater. 61, 1–20 (2017). https://doi.org/10.1016/J.ACTBIO.2017.05.020
Azarov, G.M., Maiorova, E.V., Oborina, M.A., Belyakov, A.V.: Wollastonite raw materials and their applications (a review). Glas. Ceram. 529(52), 237–240 (1995). https://doi.org/10.1007/BF00681090
Abd Rashid, R., Shamsudin, R., Abdul Hamid, M.A., Jalar, A.: Low temperature production of wollastonite from limestone and silica sand through solid-state reaction. J. Asian Ceram. Soc. 2, 77–81 (2014). https://doi.org/10.1016/J.JASCER.2014.01.010
Hossain, S.S., Ranjan, V., Pyare, R., Roy, P.K.: Study the effect of physico-mechanical characteristics of ceramic tiles after addition of river silts and wollastonite derived from wastes. Constr. Build. Mater. 209, 315–325 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.128
Almasri, K.A., Sidek, H.A.A., Matori, K.A., Zaid, M.H.M.: Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses. Results Phys. 7, 2242–2247 (2017). https://doi.org/10.1016/J.RINP.2017.04.022
Chantaramee, N., Kaewpoomee, P., Puntharod, R.: Utilization of expanded perlite as a source of silica for synthesizing wollastonite by solid state reaction. Key Eng. Mater. 690, 143–149 (2016). https://doi.org/10.4028/www.scientific.net/KEM.690.143
Wang, H., Zhang, Q., Yang, H., Sun, H.: Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol–gel process. Ceram. Int. 34, 1405–1408 (2008). https://doi.org/10.1016/J.CERAMINT.2007.05.001
Vakalova, T.V., Pogrebenkov, V.M., Karionova, N.P.: Solid-phase synthesis of wollastonite in natural and technogenic siliceous stock mixtures with varying levels of calcium carbonate component. Ceram. Int. 42, 16453–16462 (2016). https://doi.org/10.1016/J.CERAMINT.2016.06.060
Chen, C.C., Ho, C.C., Lin, S.Y., Ding, S.J.: Green synthesis of calcium silicate bioceramic powders. Ceram. Int. 41, 5445–5453 (2015). https://doi.org/10.1016/j.ceramint.2014.12.112
Vichaphund, S., Kitiwan, M., Atong, D., Thavorniti, P.: Microwave synthesis of wollastonite powder from eggshells. J. Eur. Ceram. Soc. 31, 2435–2440 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.02.026
Huang, X.H., Chang, J.: Synthesis of nanocrystalline wollastonite powders by citrate–nitrate gel combustion method. Mater. Chem. Phys. 115, 1–4 (2009). https://doi.org/10.1016/J.MATCHEMPHYS.2008.11.066
Gallini, S., Jurado, J.R., Colomer, M.T.: Synthesis and characterization of monazite-type Sr:LaPO4 prepared through coprecipitation. J. Eur. Ceram. Soc. 25, 2003–2007 (2005). https://doi.org/10.1016/J.JEURCERAMSOC.2005.03.004
Ismail, H., Shamsudin, R., Abdul Hamid, M.A.: Effect of autoclaving and sintering on the formation of β-wollastonite. Mater. Sci. Eng. C. 58, 1077–1081 (2016). https://doi.org/10.1016/j.msec.2015.09.030
Rożek, P., Król, M., Mozgawa, W.: Solidification/stabilization of municipal solid waste incineration bottom ash via autoclave treatment: Structural and mechanical properties. Constr. Build. Mater. 202, 603–613 (2019). https://doi.org/10.1016/J.CONBUILDMAT.2019.01.056
Lin, K., Chang, J., Lu, J.: Synthesis of wollastonite nanowires via hydrothermal microemulsion methods. Mater. Lett. 60, 3007–3010 (2006). https://doi.org/10.1016/J.MATLET.2006.02.034
Kokubo, T., Kushitani, H., Ohtsuki, C., Sakka, S., Yamamuro, T.: Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid. J. Mater. Sci. Mater. Med. 32(3), 79–83 (1992). https://doi.org/10.1007/BF00705272
Maazouz, Y., Chizzola, G., Döbelin, N., Bohner, M.: Cell-free, quantitative mineralization measurements as a proxy to identify osteoinductive bone graft substitutes. Biomaterials. 275, 120912 (2021). https://doi.org/10.1016/J.BIOMATERIALS.2021.120912
Hossain, S.S., Roy, P.K.: Study of physical and dielectric properties of bio-waste-derived synthetic wollastonite. J. Asian Ceram. Soc. 6, 289–298 (2018). https://doi.org/10.1080/21870764.2018.1508549
Mirghiasi, Z., Bakhtiari, F., Darezereshki, E., Esmaeilzadeh, E.: Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method. J. Ind. Eng. Chem. 20, 113–117 (2014). https://doi.org/10.1016/J.JIEC.2013.04.018
Fujii, I., Ishino, M., Akiyama, S., Murthy, M.S., Rajanandam, K.S.: Behavior of Ca(OH)2/CaO pellet under dehydration and hydration. Sol. Energy. 53, 329–341 (1994). https://doi.org/10.1016/0038-092X(94)90036-1
Bouatrous, M., Bouzerara, F., Bhakta, A.K., Delobel, F., Delhalle, J., Mekhalif, Z.: A modified wet chemical synthesis of Wollastonite ceramic nanopowders and their characterizations. Ceram. Int. 46, 12618–12625 (2020). https://doi.org/10.1016/j.ceramint.2020.02.026
Hossain, S.S., Yadav, S., Majumdar, S., Krishnamurthy, S., Pyare, R., Roy, P.K.: A comparative study of physico-mechanical, bioactivity and hemolysis properties of pseudo-wollastonite and wollastonite glass-ceramic synthesized from solid wastes. Ceram. Int. 46, 833–843 (2020). https://doi.org/10.1016/j.ceramint.2019.09.039
Si, W., Ding, C.: An investigation on crystallization property, thermodynamics and kinetics of wollastonite glass ceramics. J. Cent. South Univ. 258(25), 1888–1894 (2018). https://doi.org/10.1007/S11771-018-3878-5
Kang, S.J.: Sintering. Sintering. (2005). https://doi.org/10.1016/B978-0-7506-6385-4.X5000-6
Sintering theory and practice. Semantic Scholar. https://www.semanticscholar.org/paper/Sintering-theory-and-practice-German/166933206b5f8969a74c310207ba3e8cd6449956#paper-header (n.d.). Accessed 21 July 2022
Wang, C., Duan, Y., Markovic, B., Barbara, J., Howlett, C.R., Zhang, X., Zreiqat, H.: Phenotypic expression of bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phase compositions. Biomaterials. 25, 2507–2514 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.035
Leite, Á.J., Oliveira, N.M., Song, W., Mano, J.F.: Bioactive Hydrogel Marbles. Sci. Reports. 81(8), 1–11 (2018). https://doi.org/10.1038/s41598-018-33192-6
Mitran, V., Ion, R., Miculescu, F., Necula, M.G., Mocanu, A.C., Stan, G.E., Antoniac, I.V., Cimpean, A.: Osteoblast cell response to naturally derived calcium phosphate-based materials. Mater. 11, (2018). https://doi.org/10.3390/MA11071097
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer: A review of human carcinogens. Ars. Met. Fibres. and Dusts. 501 (2012)
Leinardi, R., Pavan, C., Yedavally, H., Tomatis, M., Salvati, A., Turci, F.: Cytotoxicity of fractured quartz on THP-1 human macrophages: role of the membranolytic activity of quartz and phagolysosome destabilization. Arch. Toxicol. 94, 2981–2995 (2020). https://doi.org/10.1007/S00204-020-02819-X/FIGURES/6
Núñez-Rodríguez, L.A., Encinas-Romero, M.A., Gómez-Álvarez, A., Valenzuela-García, J.L., Tiburcio-Munive, G.C., Núñez-Rodríguez, L.A., Encinas-Romero, M.A., Gómez-Álvarez, A., Valenzuela-García, J.L., Tiburcio-Munive, G.C.: Evaluation of Bioactive Properties of α and β Wollastonite Bioceramics Soaked in a Simulated Body Fluid. J. Biomater. Nanobiotechnol. 9, 263–276 (2018). https://doi.org/10.4236/JBNB.2018.93015
Zuleta, F., Velasquez, P.A., De Aza, P.N.: In vitro characterization of laser ablation pseudowollastonite coating. Mater. Sci. Eng. C. 2, 377–383 (2011). https://doi.org/10.1016/J.MSEC.2010.10.013
Siriphannon, P., Kameshima, Y., Yasumori, A., Okada, K., Hayashi, S.: Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. J. Eur. Ceram. Soc. 22, 511–520 (2002). https://doi.org/10.1016/S0955-2219(01)00301-6
Vuong Bùi, X.: Bioactive ceramic powder prepared using a new sol-gel process. Process. Appl. Ceram. 11, 87–92 (2017). https://doi.org/10.2298/PAC1702087B