Green 3-step synthesis of bioactive wollastonite from industrial wastes: effects of sintering temperature, sintering time and milling time

Journal of the Australian Ceramic Society - Tập 59 - Trang 605-620 - 2023
Saadet Güler1, Ahmet Yavaş1,2, Günnur Pulat3, Şerife Özcan3, Ozan Karaman3, Mücahit Sütçü1
1Metallurgical and Materials Engineering Dept., Izmir Katip Celebi University, Izmir, Turkey
2Graduate Program of Materials Science and Engineering, Graduate School of Natural and Applied Science, Izmir Katip Celebi University, Izmir, Turkey
3Biomedical Engineering Dept., Izmir Katip Celebi University, Izmir, Turkey

Tóm tắt

In recent years, environmental problems arising from the gradual depletion of natural resources and the rapid increase in waste generation have brought recycling and waste management into focus. Since wollastonite (CaSiO3) as a calcium silicate ceramic is a bioactive material used in various fields, its synthetic production attracts attention. Therefore, the present study aims to produce bioactive wollastonite from marble and quartz wastes as industrial wastes with a 3-step technique from the green perspective. In addition, the effects of production parameters including sintering temperature (900 1000, 1100, 1200, and 1300°C), sintering time (2, 6, and 12 h), and milling time (0.5 and 12 h) on the phase and morphological structure, biocompatibility and bioactivity of the obtained synthetic wollastonite were investigated comparatively in the study. Accordingly, raw waste materials were first characterized with X-ray fluorescence (XRF), thermogravimetric analysis (TG/DTG), X-ray diffractometer (XRD), and scanning electron microscopy (SEM), respectively. TG/DTG results were used to optimize sintering temperatures of the CaO:SiO2 (with 1:1 molar ratio) aqueous mixtures. The resulting powders were also analyzed using XRD, FTIR, and SEM. Structural characterization revealed that the formation of wollastonite (CS) phases and the polymorphic transformation reaction (from β-wollastonite to α-wollastonite) are affected by sintering and milling time as well as sintering temperature. By adjusting the milling and sintering time, a high-temperature phase α-wollastonite can be synthesized at a relatively low temperature of 1000°C, when β-wollastonite begins to transform. The biocompatibility of the wollastonite powder extracts was evaluated on mouse fibroblast, L929 cell lines by MTT assay and the changing in the phase of quartz by temperature, sintering and milling resulted with increased biocompatibility of the wollastonite powders. The obtained in vitro mineralization results after soaking of the wollastonite powders for 1, 3, and 7 days in SBF proved that SW exhibited good bioactivity due to the formation of spherical-shaped carbonated hydroxyapatite.

Tài liệu tham khảo

Hossain, S.K.S., Mathur, L., Roy, P.K.: Rice husk/rice husk ash as an alternative source of silica in ceramics: A review. J. Asian Ceram. Soc. 6, 299–313 (2018). https://doi.org/10.1080/21870764.2018.1539210 Eliche-Quesada, D., Martínez-García, C., Martínez-Cartas, M.L., Cotes-Palomino, M.T., Pérez-Villarejo, L., Cruz-Pérez, N., Corpas-Iglesias, F.A.: The use of different forms of waste in the manufacture of ceramic bricks. Appl. Clay Sci. 52, 270–276 (2011). https://doi.org/10.1016/j.clay.2011.03.003 Nour, W.M.N., Mostafa, A.A., Ibrahim, D.M.: Recycled wastes as precursor for synthesizing wollastonite. Ceram. Int. 34, 101–105 (2008). https://doi.org/10.1016/j.ceramint.2006.08.019 Zareei, S.A., Ameri, F., Shoaei, P., Bahrami, N.: Recycled ceramic waste high strength concrete containing wollastonite particles and micro-silica: A comprehensive experimental study. Constr. Build. Mater. 201, 11–32 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.161 Gholampour, A., Ozbakkaloglu, T.: Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag. J. Clean. Prod. 162, 1407–1417 (2017). https://doi.org/10.1016/J.JCLEPRO.2017.06.087 Ding, L., Ning, W., Wang, Q., Shi, D., Luo, L.: Preparation and characterization of glass-ceramic foams from blast furnace slag and waste glass. Mater. Lett. 141, 327–329 (2015). https://doi.org/10.1016/J.MATLET.2014.11.122 Bayer Ozturk, Z., Eren Gultekin, E.: Preparation of ceramic wall tiling derived from blast furnace slag. Ceram. Int. 41, 12020–12026 (2015). https://doi.org/10.1016/j.ceramint.2015.06.014 Dávalos, J., Bonilla, A., Villaquirán-Caicedo, M.A., De Gutiérrez, R.M., Rincón, J.M.: Preparation of glass–ceramic materials from coal ash and rice husk ash: Microstructural, physical and mechanical properties, Boletín La Soc. Española Cerámica y Vidr. 60, 183–193 (2021). https://doi.org/10.1016/J.BSECV.2020.02.002 Zhu, M., Ji, R., Li, Z., Wang, H., Liu, L.L., Zhang, Z.: Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass. Constr. Build. Mater. 112, 398–405 (2016). https://doi.org/10.1016/J.CONBUILDMAT.2016.02.183 Luo, Y., Zheng, S., Ma, S., Liu, C., Ding, J., Wang, X.: Novel two-step process for synthesising β-SiC whiskers from coal fly ash and water glass. Ceram. Int. 44, 10585–10595 (2018). https://doi.org/10.1016/J.CERAMINT.2018.03.082 Hossain, S.S., Mathur, L., Majhi, M.R., Roy, P.K.: Manufacturing of green building brick: recycling of waste for construction purpose. J. Mater. Cycles Waste Manag. 21, 281–292 (2019). https://doi.org/10.1007/S10163-018-0788-4/FIGURES/12 Bixapathi, G., Saravanan, M.: Strength and durability of concrete using Rice Husk ash as a partial replacement of cement. Mater. Today Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.11.267 Syahida Adnan, Z., Ariffin, N.F., Syed Mohsin, S.M., Lim, N.H.A.S.: Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete. Mater. Today Proc. 48, 842–848 (2022). https://doi.org/10.1016/J.MATPR.2021.02.400 Subathra Devi, V., Gnanavel, B.K.: Properties of Concrete Manufactured Using Steel Slag. Procedia Eng. 97, 95–104 (2014). https://doi.org/10.1016/J.PROENG.2014.12.229 Shih, P.H., Wu, Z.Z., Chiang, H.L.: Characteristics of bricks made from waste steel slag. Waste Manag. 24, 1043–1047 (2004). https://doi.org/10.1016/J.WASMAN.2004.08.006 Costa, L.C.B., Nogueira, M.A., Andrade, H.D., de Carvalho, J.M.F., Elói, F., Brigolini, G.J., Peixoto, R.A.F.: Mechanical and durability performance of concretes produced with steel slag aggregate and mineral admixtures. Constr. Build. Mater. 318, 126152 (2022). https://doi.org/10.1016/J.CONBUILDMAT.2021.126152 Sutcu, M., Akkurt, S.: The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceram. Int. 35, 2625–2631 (2009). https://doi.org/10.1016/J.CERAMINT.2009.02.027 Abed, M.J., Khaleel, O.R., Fayyadh, M.M.: Effect of aluminium sulphate Al2(SO4)3 treatment on paper waste as a fine aggregate partial replacement in lightweight cement mortar. Mater. Today Proc. 42, 1152–1159 (2021). https://doi.org/10.1016/J.MATPR.2020.12.529 Martínez, C., Cotes, T., Corpas, F.A.: Recovering wastes from the paper industry: Development of ceramic materials. Fuel Process. Technol. 103, 117–124 (2012). https://doi.org/10.1016/J.FUPROC.2011.10.017 Ke, S., Wang, Y., Pan, Z., Ning, C., Zheng, S.: Recycling of polished tile waste as a main raw material in porcelain tiles. J. Clean. Prod. 115, 238–244 (2016). https://doi.org/10.1016/J.JCLEPRO.2015.12.064 Vilas Meena, R., Kumar Jain, J., Singh Chouhan, H., Mandolia, R., Beniwal, A.S.: Impact of waste ceramic tile on resistance to fire and abrasion of self-compacting concrete. Mater. Today Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.12.287 Dubale, M., Goel, G., Kalamdhad, A., Singh, L.B.: An investigation of demolished floor and wall ceramic tile waste utilization in fired brick production. Environ. Technol. Innov. 25, 102228 (2022). https://doi.org/10.1016/J.ETI.2021.102228 Sutcu, M., Alptekin, H., Erdogmus, E., Er, Y., Gencel, O.: Characteristics of fired clay bricks with waste marble powder addition as building materials. Constr. Build. Mater. 82, 1–8 (2015). https://doi.org/10.1016/J.CONBUILDMAT.2015.02.055 Oggu, A., Sai Madupu, L.N.K.: Study on properties of porous concrete incorporating aloevera and marble waste powder as a partial cement replacement. Mater. Today Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.11.595 Jarugumalli, V., Madupu, L.N.K.S.: The flow properties of SCC with marble waste powder as a partial substitute for cement. Mater. Today Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.10.047 Kalkan, Ş.O., Yavaş, A., Güler, S., Torman Kayalar, M., Sütçü, M., Gündüz, L.: An experimental approach to a cementitious lightweight composite mortar using synthetic wollastonite. Constr. Build. Mater. 341, 127911 (2022). https://doi.org/10.1016/J.CONBUILDMAT.2022.127911 Peng, L., Qin, S.: Mechanical behaviour and microstructure of an artificial stone slab prepared using a SiO2 waste crucible and quartz sand. Constr. Build. Mater. 171, 273–280 (2018). https://doi.org/10.1016/J.CONBUILDMAT.2018.03.141 Kumar, S., Gupta, R.C., Shrivastava, S.: Long term studies on the utilisation of quartz sandstone wastes in cement concrete. J. Clean. Prod. 143, 634–642 (2017). https://doi.org/10.1016/J.JCLEPRO.2016.12.062 Sadowski, Ł., Piechówka-Mielnik, M., Widziszowski, T., Gardynik, A., Mackiewicz, S.: Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust. J. Clean. Prod. 212, 727–740 (2019). https://doi.org/10.1016/J.JCLEPRO.2018.12.059 Palakurthy, S., Samudrala, R.K.: In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Mater. Sci. Eng. C. 98, 109–117 (2019). https://doi.org/10.1016/j.msec.2018.12.101 Gineika, A., Dambrauskas, T., Baltakys, K.: Synthesis and characterisation of wollastonite with aluminium and fluoride ions. Ceram. Int. 47, 22900–22910 (2021). https://doi.org/10.1016/J.CERAMINT.2021.05.003 Nair, N.A., Sairam, V.: Research initiatives on the influence of wollastonite in cement-based construction material- A review. J. Clean. Prod. 283, 124665 (2021). https://doi.org/10.1016/J.JCLEPRO.2020.124665 Chan, J.X., Wong, J.F., Hassan, A., Shrivastava, N.K., Mohamad, Z., Othman, N.: Green hydrothermal synthesis of high aspect ratio wollastonite nanofibers: Effects of reaction medium, temperature and time. Ceram. Int. 46, 22624–22634 (2020). https://doi.org/10.1016/j.ceramint.2020.06.025 González-Barros, M.R.y., García-Ten, J., Alonso-Jiménez, A.: Synthesis of wollastonite from diatomite-rich marls and its potential ceramic uses, Boletín La Soc. Española Cerámica y Vidr. (2021). https://doi.org/10.1016/j.bsecv.2021.05.002 Azmi, M., Ismail, H., Shamsudin, R., Hamid, A., Awang, R.: Characteristics of β-wollastonite derived from rice straw ash and limestone. Researchgate.Net. 52, 163–174 (2016) Flores-Ledesma, A., Tejeda-Cruz, A., Bucio, L., Wintergerst, A.M., Rodríguez-Chávez, J.A., Moreno-Vargas, Y.A., Arenas-Alatorre, J.A.: Hydration products and bioactivity of an experimental MTA-like cement modified with wollastonite and bioactive glass. Ceram. Int. 46, 15963–15971 (2020). https://doi.org/10.1016/J.CERAMINT.2020.03.146 Liu, X., Ding, C., Chu, P.K.: Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials. 25, 1755–1761 (2004). https://doi.org/10.1016/J.BIOMATERIALS.2003.08.024 Kolçakoğlu, Ş., Özyurt, A., Üstel, F.: Evaluation of the Resistance and Bioactivity of Wollastonite and Hydroxyapatite Coated Zirconia Dental Implant Material. Turkiye Klin. J. Dent. Sci. 26, 331–347 (2020). https://doi.org/10.5336/dentalsci.2019-72514 Magallanes-Perdomo, M., Luklinska, Z.B., De Aza, A.H., Carrodeguas, R.G., De Aza, S., Pena, P.: Bone-like forming ability of apatite–wollastonite glass ceramic. J. Eur. Ceram. Soc. 31, 1549–1561 (2011). https://doi.org/10.1016/J.JEURCERAMSOC.2011.03.007 Kunjalukkal Padmanabhan, S., Gervaso, F., Carrozzo, M., Scalera, F., Sannino, A., Licciulli, A.: Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering. Ceram. Int. 39, 619–627 (2013). https://doi.org/10.1016/j.ceramint.2012.06.073 Azeena, S., Subhapradha, N., Selvamurugan, N., Narayan, S., Srinivasan, N., Murugesan, R., Chung, T.W., Moorthi, A.: Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering. Mater. Sci. Eng. C. 71, 1156–1165 (2017). https://doi.org/10.1016/J.MSEC.2016.11.118 Gao, C., Peng, S., Feng, P., Shuai, C.: Bone biomaterials and interactions with stem cells. Bone Res. 51(5), 1–33 (2017). https://doi.org/10.1038/boneres.2017.59 Gao, C., Feng, P., Peng, S., Shuai, C.: Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomater. 61, 1–20 (2017). https://doi.org/10.1016/J.ACTBIO.2017.05.020 Azarov, G.M., Maiorova, E.V., Oborina, M.A., Belyakov, A.V.: Wollastonite raw materials and their applications (a review). Glas. Ceram. 529(52), 237–240 (1995). https://doi.org/10.1007/BF00681090 Abd Rashid, R., Shamsudin, R., Abdul Hamid, M.A., Jalar, A.: Low temperature production of wollastonite from limestone and silica sand through solid-state reaction. J. Asian Ceram. Soc. 2, 77–81 (2014). https://doi.org/10.1016/J.JASCER.2014.01.010 Hossain, S.S., Ranjan, V., Pyare, R., Roy, P.K.: Study the effect of physico-mechanical characteristics of ceramic tiles after addition of river silts and wollastonite derived from wastes. Constr. Build. Mater. 209, 315–325 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.128 Almasri, K.A., Sidek, H.A.A., Matori, K.A., Zaid, M.H.M.: Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses. Results Phys. 7, 2242–2247 (2017). https://doi.org/10.1016/J.RINP.2017.04.022 Chantaramee, N., Kaewpoomee, P., Puntharod, R.: Utilization of expanded perlite as a source of silica for synthesizing wollastonite by solid state reaction. Key Eng. Mater. 690, 143–149 (2016). https://doi.org/10.4028/www.scientific.net/KEM.690.143 Wang, H., Zhang, Q., Yang, H., Sun, H.: Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol–gel process. Ceram. Int. 34, 1405–1408 (2008). https://doi.org/10.1016/J.CERAMINT.2007.05.001 Vakalova, T.V., Pogrebenkov, V.M., Karionova, N.P.: Solid-phase synthesis of wollastonite in natural and technogenic siliceous stock mixtures with varying levels of calcium carbonate component. Ceram. Int. 42, 16453–16462 (2016). https://doi.org/10.1016/J.CERAMINT.2016.06.060 Chen, C.C., Ho, C.C., Lin, S.Y., Ding, S.J.: Green synthesis of calcium silicate bioceramic powders. Ceram. Int. 41, 5445–5453 (2015). https://doi.org/10.1016/j.ceramint.2014.12.112 Vichaphund, S., Kitiwan, M., Atong, D., Thavorniti, P.: Microwave synthesis of wollastonite powder from eggshells. J. Eur. Ceram. Soc. 31, 2435–2440 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.02.026 Huang, X.H., Chang, J.: Synthesis of nanocrystalline wollastonite powders by citrate–nitrate gel combustion method. Mater. Chem. Phys. 115, 1–4 (2009). https://doi.org/10.1016/J.MATCHEMPHYS.2008.11.066 Gallini, S., Jurado, J.R., Colomer, M.T.: Synthesis and characterization of monazite-type Sr:LaPO4 prepared through coprecipitation. J. Eur. Ceram. Soc. 25, 2003–2007 (2005). https://doi.org/10.1016/J.JEURCERAMSOC.2005.03.004 Ismail, H., Shamsudin, R., Abdul Hamid, M.A.: Effect of autoclaving and sintering on the formation of β-wollastonite. Mater. Sci. Eng. C. 58, 1077–1081 (2016). https://doi.org/10.1016/j.msec.2015.09.030 Rożek, P., Król, M., Mozgawa, W.: Solidification/stabilization of municipal solid waste incineration bottom ash via autoclave treatment: Structural and mechanical properties. Constr. Build. Mater. 202, 603–613 (2019). https://doi.org/10.1016/J.CONBUILDMAT.2019.01.056 Lin, K., Chang, J., Lu, J.: Synthesis of wollastonite nanowires via hydrothermal microemulsion methods. Mater. Lett. 60, 3007–3010 (2006). https://doi.org/10.1016/J.MATLET.2006.02.034 Kokubo, T., Kushitani, H., Ohtsuki, C., Sakka, S., Yamamuro, T.: Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid. J. Mater. Sci. Mater. Med. 32(3), 79–83 (1992). https://doi.org/10.1007/BF00705272 Maazouz, Y., Chizzola, G., Döbelin, N., Bohner, M.: Cell-free, quantitative mineralization measurements as a proxy to identify osteoinductive bone graft substitutes. Biomaterials. 275, 120912 (2021). https://doi.org/10.1016/J.BIOMATERIALS.2021.120912 Hossain, S.S., Roy, P.K.: Study of physical and dielectric properties of bio-waste-derived synthetic wollastonite. J. Asian Ceram. Soc. 6, 289–298 (2018). https://doi.org/10.1080/21870764.2018.1508549 Mirghiasi, Z., Bakhtiari, F., Darezereshki, E., Esmaeilzadeh, E.: Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method. J. Ind. Eng. Chem. 20, 113–117 (2014). https://doi.org/10.1016/J.JIEC.2013.04.018 Fujii, I., Ishino, M., Akiyama, S., Murthy, M.S., Rajanandam, K.S.: Behavior of Ca(OH)2/CaO pellet under dehydration and hydration. Sol. Energy. 53, 329–341 (1994). https://doi.org/10.1016/0038-092X(94)90036-1 Bouatrous, M., Bouzerara, F., Bhakta, A.K., Delobel, F., Delhalle, J., Mekhalif, Z.: A modified wet chemical synthesis of Wollastonite ceramic nanopowders and their characterizations. Ceram. Int. 46, 12618–12625 (2020). https://doi.org/10.1016/j.ceramint.2020.02.026 Hossain, S.S., Yadav, S., Majumdar, S., Krishnamurthy, S., Pyare, R., Roy, P.K.: A comparative study of physico-mechanical, bioactivity and hemolysis properties of pseudo-wollastonite and wollastonite glass-ceramic synthesized from solid wastes. Ceram. Int. 46, 833–843 (2020). https://doi.org/10.1016/j.ceramint.2019.09.039 Si, W., Ding, C.: An investigation on crystallization property, thermodynamics and kinetics of wollastonite glass ceramics. J. Cent. South Univ. 258(25), 1888–1894 (2018). https://doi.org/10.1007/S11771-018-3878-5 Kang, S.J.: Sintering. Sintering. (2005). https://doi.org/10.1016/B978-0-7506-6385-4.X5000-6 Sintering theory and practice. Semantic Scholar. https://www.semanticscholar.org/paper/Sintering-theory-and-practice-German/166933206b5f8969a74c310207ba3e8cd6449956#paper-header (n.d.). Accessed 21 July 2022 Wang, C., Duan, Y., Markovic, B., Barbara, J., Howlett, C.R., Zhang, X., Zreiqat, H.: Phenotypic expression of bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phase compositions. Biomaterials. 25, 2507–2514 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.035 Leite, Á.J., Oliveira, N.M., Song, W., Mano, J.F.: Bioactive Hydrogel Marbles. Sci. Reports. 81(8), 1–11 (2018). https://doi.org/10.1038/s41598-018-33192-6 Mitran, V., Ion, R., Miculescu, F., Necula, M.G., Mocanu, A.C., Stan, G.E., Antoniac, I.V., Cimpean, A.: Osteoblast cell response to naturally derived calcium phosphate-based materials. Mater. 11, (2018). https://doi.org/10.3390/MA11071097 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer: A review of human carcinogens. Ars. Met. Fibres. and Dusts. 501 (2012) Leinardi, R., Pavan, C., Yedavally, H., Tomatis, M., Salvati, A., Turci, F.: Cytotoxicity of fractured quartz on THP-1 human macrophages: role of the membranolytic activity of quartz and phagolysosome destabilization. Arch. Toxicol. 94, 2981–2995 (2020). https://doi.org/10.1007/S00204-020-02819-X/FIGURES/6 Núñez-Rodríguez, L.A., Encinas-Romero, M.A., Gómez-Álvarez, A., Valenzuela-García, J.L., Tiburcio-Munive, G.C., Núñez-Rodríguez, L.A., Encinas-Romero, M.A., Gómez-Álvarez, A., Valenzuela-García, J.L., Tiburcio-Munive, G.C.: Evaluation of Bioactive Properties of α and β Wollastonite Bioceramics Soaked in a Simulated Body Fluid. J. Biomater. Nanobiotechnol. 9, 263–276 (2018). https://doi.org/10.4236/JBNB.2018.93015 Zuleta, F., Velasquez, P.A., De Aza, P.N.: In vitro characterization of laser ablation pseudowollastonite coating. Mater. Sci. Eng. C. 2, 377–383 (2011). https://doi.org/10.1016/J.MSEC.2010.10.013 Siriphannon, P., Kameshima, Y., Yasumori, A., Okada, K., Hayashi, S.: Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. J. Eur. Ceram. Soc. 22, 511–520 (2002). https://doi.org/10.1016/S0955-2219(01)00301-6 Vuong Bùi, X.: Bioactive ceramic powder prepared using a new sol-gel process. Process. Appl. Ceram. 11, 87–92 (2017). https://doi.org/10.2298/PAC1702087B