Greatest lower bounds on the Ricci curvature of Fano manifolds

Wiley - Tập 147 Số 1 - Trang 319-331 - 2011
Gábor Székelyhidi1
1Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA

Tóm tắt

Abstract

On a Fano manifoldMwe study the supremum of the possibletsuch that there is a Kähler metricωc1(M) with Ricci curvature bounded below byt. This is shown to be the same as the maximum existence time of Aubin’s continuity path for finding Kähler–Einstein metrics. We show that onP2blown up in one point this supremum is 6/7, and we give upper bounds for other manifolds.

Từ khóa


Tài liệu tham khảo

10.1142/S0129167X92000175

10.1007/BF01389077

10.24033/asens.2110

10.4310/jdg/1264601038

10.1002/cpa.20182

10.2307/2374768

10.2748/tmj/1178228410

[29] Székelyhidi G. , The Kähler–Ricci flow and K-polystability. Amer. J. Math., arXiv:0803.1613, to appear.

10.4310/CAG.2004.v12.n4.a8

10.2969/aspm/01010011

10.4310/jdg/1090349449

Yau, 1993, Open problems in geometry, Proc. Sympos. Pure Math., 54, 1

[4] Chen X. X. , Space of Kähler metrics IV – on the lower bound of the K-energy, Preprint (2008), arXiv:0809.4081.

10.1002/cpa.3160310304

Mabuchi, 1987, Some symplectic geometry on compact Kähler manifolds, Osaka J. Math., 24, 227

10.1016/0022-1236(84)90093-4

10.1007/s002220050176

10.1007/s00208-008-0266-8

10.1090/S0002-9947-02-02965-3

Aubin, 1978, Équations du type Monge–Ampère sur les varietés kählériennes compactes, Bull. Sci. Math. (2), 102, 63

10.4310/jdg/1143593746

10.1353/ajm.0.0013

Phong, 2009, Current developments in mathematics 2007

10.4310/jdg/1090950195

10.1353/ajm.2005.0043

10.1007/s00222-007-0076-8

10.1007/s10240-008-0013-4

10.1155/S1073792800000337

[7] Donaldson S. K. , A note on the α-invariant of the Mukai–Umemura 3-fold, arXiv:0711.4357.

Donaldson, 1999, Northern California symplectic geometry seminar, 13

10.1007/s00039-009-0714-y

Kuranishi, 1965, Proc. conf. complex analysis, Minneapolis, 1964, 142, 10.1007/978-3-642-48016-4_13

McDuff, 1998, Introduction to symplectic topology

[17] Munteanu O. and Székelyhidi G. , On convergence of the Kähler–Ricci flow, Preprint, arXiv:0904.3505.

[19] Paul S. T. and Tian G. , CM stability and the generalised Futaki invariant II, math.DG/0606505.

10.4310/jdg/1207834553