Gravity sensing: cold atom trap onboard a 6U CubeSat
Tóm tắt
“Cold atoms” can be used as ultra-sensitive sensors for measuring accelerations and are capable of mapping changes in the strength of gravity across the surface of the Earth. They could offer significant benefits to existing space based gravity sensing capabilities. Gravity sensors in space are already used for many Earth observation applications including monitoring polar ice mass, ocean currents and sea level. Cold atom sensors could enable higher resolution measurements which would allow monitoring of smaller water sources and discovery of new underground natural resources which are currently undetectable. The adoption of cold atom technology is constrained by low technology readiness level (TRL). Teledyne e2v and its partners are addressing this maturity gap through project Cold Atom Space PAyload (CASPA) which is an Innovate UK and Engineering and Physical Sciences Research Council (EPSRC) funded project, involving the University of Birmingham as science lead, XCAM, Clyde Space, Covesion, Gooch & Housego, and the University of Southampton. Through the CASPA project the consortium have built and vibration tested a 6U (approximate dimensions: 100 × 200 × 300 mm) cube Satellite (CubeSat) that is capable of laser cooling atoms down to 100’s of micro kelvin, as a pre-cursor to gravity sensors for future Earth observation missions.
Tài liệu tham khảo
Chapin, David: Gravity instruments: past, present, future. Lead. Edge 17, 100 (1998). https://doi.org/10.1190/1.1437806
Schwarz, J.P., Robertson, D.S., Niebauer, T.M., Faller, J.E.: A free-fall determination of the newtonian constant of gravity. Science 18, 2230–2234 (1998)
Freier, C., et al.: Mobile quantum gravity sensor with unprecedented stability. J. Phys. Conf. Ser. 723, 012050 (2016)
Wu, X., Pagel, Z., Malek, B.S., Nguyen, T.H., Zi, F., Scheirer, D.S., Müller, H.: Gravity surveys using a mobile atom interferometer, Science Advances 06 Sep 2019: eaax0800
Geiger, R.: Atom interferometry: from fundamental physics to precision inertial measurements. Atomic Physics, [physics.atom-ph]. Sorbonne Université, 2019. fftel-02267800f (2019)
Olivier, C., Christian, S., Luca, M., Roger, H., Pierluigi, S.: Measuring the Earth’s gravity field with cold atom interferometers, arXiv:1506.03989v1 [physics.atom-ph] 12 Jun 2015
Bongs, K., Holynski, M., Vovrosh, J., et al.: Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys. 1, 731–739 (2019). https://doi.org/10.1038/s42254-019-0117-4
Pail, R., Bingham, R., Braitenberg, C., Dobslaw, H., Eicker, A., Güntner, A., Horwath, M., Ivins, E., Longuevergne, L., Panet, I., Wouters, B., IUGG Expert Panel,: Science and user needs for observing global mass transport to understand global change and to benefit society. Surv. Geophys. 36, 743–772 (2015)
Liu, L., Lü, D., Chen, W., et al.: In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms. Nat. Commun. 9, 2760 (2018). https://doi.org/10.1038/s41467-018-05219-z
Elliott, E.R., Krutzik, M.C., Williams, J.R., et al.: NASA’s Cold Atom Lab (CAL): system development and ground test status. npj Microgravity 4, 16 (2018). https://doi.org/10.1038/s41526-018-0049-9
Becker, D., Lachmann, M.D., Seidel, S.T., et al.: Space-borne Bose-Einstein condensation for precision interferometry. Nature 562, 391–395 (2018). https://doi.org/10.1038/s41586-018-0605-1
Ertmer, W., Rasel, E., Salomon, C., Schiller, S., Tino, G.M., Cacciapuoti, L.: Cold atoms and precision sensors in space. Europhys. News 39(3), 33–34 (2008)
Bacchetta, A., Colangelo, L., Canuto, E., Dionisio, S., Massotti, L., Novara, C., Parisch, M., Silvestrin, P.: From GOCE to NGGM: automatic control breakthroughs for European future gravity missions. IFAC-PapersOnLine 50(1), 6428–6433 (2017)
Trimeche, A., Battelier, B., Becker, D., Bertoldi, A., Bouyer, P., Braxmaier, C., Charron, E., Corgier, R., Cornelius, M., Douch, K., Gaaloul, N., Herrmann, S., Müller, J., Rasel, E., Schubert, C., Wu, H., Pereira dos Santos, F.: Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry. Cl Quantum Gravity 36(21):215004 (2019)
Fundamental Physics Roadmap Advisory Team (FPR-AT): A Roadmap for Fundamental Physics in Space (2010)
European Space Agency, Product and Quality Assurance Requirements for In-Orbit Demonstration CubeSat Projects, Issue 1, Revision 1, March 2013, TEC-SY/129/2013/SPD/RW
Metcalf, H.J., van der Straten, P.: Laser cooling and trapping. J. Opt. Soc. Am. B 20(5), 887–908 (2003)
Sproles, D.E.: Laser Spectroscopy and Magneto-Optical Trapping of Rubidium Atoms. Stony Brook University, Stony Brook (2008)
Stampoulidis, L., Edmunds, J., Kechagias, M., Stevens, G., Farzana, J., Welch, M., Kehayas, E.: Radiation-resistant optical fiber amplifiers for satellite communications. In: Proceedings of the SPIE, Volume 10096, id. 100960H 12 pp. (2017)
California Polytechnic State University: 6U CubeSat Design Specification Rev. 1.0 (2018)
NASA: Goddard Space Flight Center, General Environmental Verification Specification, GEVS-SE, REV A (1996)
Teledyne e2v.: Teledyne e2v Quantum Technology Brochure 2017, https://www.teledyne-e2v.com/content/uploads/2017/08/Te2v_Brochure_Quantum_2017.pdf. Accessed 16 June 2020
McKee, M.: Core concept: atom interferometry. PNAS 112(40), 12228–12229 (2015)