Gravitational waves from a supercooled electroweak phase transition and their detection with pulsar timing arrays
Tóm tắt
We investigate the properties of a stochastic gravitational wave background produced by a first-order electroweak phase transition in the regime of extreme supercooling. We study a scenario whereby the percolation temperature that signifies the completion of the transition,
$$T_\mathrm{p}$$
, is as low as a few MeV (nucleosynthesis temperature), while most of the true vacuum bubbles are formed much earlier at the nucleation temperature,
$$T_\mathrm{n}\sim 50$$
GeV. This implies that the gravitational wave spectrum is mainly produced by the collisions of large bubbles and characterised by a large amplitude and a peak frequency as low as
$$f \sim 10^{-9}{-}10^{-7}$$
Hz. We show that such a scenario can occur in (but not limited to) a model based on a non-linear realisation of the electroweak gauge group, so that the Higgs vacuum configuration is altered by a cubic coupling. In order to carefully quantify the evolution of the phase transition of this model over such a wide temperature range we go beyond the usual fast transition approximation, taking into account the expansion of the Universe as well as the behaviour of the nucleation probability at low temperatures. Our computation shows that there exists a range of parameters for which the gravitational wave spectrum lies at the edge between the exclusion limits of current pulsar timing array experiments and the detection band of the future Square Kilometre Array observatory.
Tài liệu tham khảo
M.S. Turner, F. Wilczek, Relic gravitational waves and extended inflation. Phys. Rev. Lett. 65, 3080–3083 (1990). doi:10.1103/PhysRevLett.65.3080
A. Kosowsky, M.S. Turner, R. Watkins, Gravitational radiation from colliding vacuum bubbles. Phys. Rev. D 45, 4514–4535 (1992). doi:10.1103/PhysRevD.45.4514
A. Kosowsky, M.S. Turner, R. Watkins, Gravitational waves from first order cosmological phase transitions. Phys. Rev. Lett. 69, 2026–2029 (1992). doi:10.1103/PhysRevLett.69.2026
A. Kosowsky, M.S. Turner, Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions. Phys. Rev. D 47, 4372–4391 (1993). doi:10.1103/PhysRevD.47.4372. arXiv:astro-ph/9211004
M. Kamionkowski, A. Kosowsky, M.S. Turner, Gravitational radiation from first order phase transitions. Phys. Rev. D 49, 2837–2851 (1994). doi:10.1103/PhysRevD.49.2837. arXiv:astro-ph/9310044
K. Kajantie, M. Laine, K. Rummukainen, M.E. Shaposhnikov, Is there a hot electroweak phase transition at m(H) larger or equal to m(W)? Phys. Rev. Lett. 77, 2887–2890 (1996). doi:10.1103/PhysRevLett.77.2887. arXiv:hep-ph/9605288
V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe. Phys. Lett. B 155, 36 (1985). doi:10.1016/0370-2693(85)91028-7
M. Trodden, Electroweak baryogenesis. Rev. Mod. Phys. 71, 1463–1500 (1999). doi:10.1103/RevModPhys.71.1463. arXiv:hep-ph/9803479
D.E. Morrissey, M.J. Ramsey-Musolf, Electroweak baryogenesis. N. J. Phys. 14, 125003 (2012). doi:10.1088/1367-2630/14/12/125003. arXiv:1206.2942
T. Konstandin, Quantum transport and electroweak baryogenesis. Phys. Usp. 56, 747–771 (2013). doi:10.3367/UFNe.0183.201308a.0785. arXiv:1302.6713
G.A. White, A pedagogical introduction to electroweak baryogenesis. In: IOP Concise Physics. Morgan & Claypool, San Rafael (2016). doi:10.1088/978-1-6817-4457-5
C. Caprini et al., Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions. JCAP 1604, 001 (2016). DOI:10.1088/1475-7516/2016/04/001. arXiv: 1512.06239
C. Delaunay, C. Grojean, J.D. Wells, Dynamics of non-renormalizable electroweak symmetry breaking. JHEP 04, 029 (2008). doi:10.1088/1126-6708/2008/04/029. arXiv:0711.2511
J. Kehayias, S. Profumo, Semi-analytic calculation of the gravitational wave signal from the electroweak phase transition for general quartic scalar effective potentials. JCAP 1003, 003 (2010). doi:10.1088/1475-7516/2010/03/003. arXiv:0911.0687
L. Leitao, A. Megevand, A.D. Sanchez, Gravitational waves from the electroweak phase transition. JCAP 1210, 024 (2012). doi:10.1088/1475-7516/2012/10/024. arXiv:1205.3070
L. Leitao, A. Megevand, Gravitational waves from a very strong electroweak phase transition. JCAP 1605, 037 (2016). doi:10.1088/1475-7516/2016/05/037. arXiv:1512.08962
M. Kakizaki, S. Kanemura, T. Matsui, Gravitational waves as a probe of extended scalar sectors with the first order electroweak phase transition. Phys. Rev. D 92, 115007 (2015). doi:10.1103/PhysRevD.92.115007. arXiv:1509.08394
K. Hashino, M. Kakizaki, S. Kanemura, T. Matsui, Synergy between measurements of gravitational waves and the triple-Higgs coupling in probing the first-order electroweak phase transition. Phys. Rev. D 94, 015005 (2016). doi:10.1103/PhysRevD.94.015005. arXiv:1604.02069
K. Hashino, M. Kakizaki, S. Kanemura, P. Ko, T. Matsui, Gravitational waves and Higgs boson couplings for exploring first order phase transition in the model with a singlet scalar field. Phys. Lett. B 766, 49–54 (2017). doi:10.1016/j.physletb.2016.12.052. arXiv:1609.00297
F.P. Huang, Y. Wan, D.-G. Wang, Y.-F. Cai, X. Zhang, Hearing the echoes of electroweak baryogenesis with gravitational wave detectors. Phys. Rev. D 94, 041702 (2016). doi:10.1103/PhysRevD.94.041702. arXiv:1601.01640
V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet. arXiv:1611.02073
W. Chao, H.-K. Guo, J. Shu, Gravitational wave signals of electroweak phase transition triggered by dark matter. arXiv:1702.02698
C. Balazs, A. Fowlie, A. Mazumdar, G. White, Gravitational waves at aLIGO and vacuum stability with a scalar singlet extension of the Standard Model. Phys. Rev. D 95, 043505 (2017). doi:10.1103/PhysRevD.95.043505. arXiv:1611.01617
A. Beniwal, M. Lewicki, J.D. Wells, M. White, A.G. Williams, Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis. arXiv:1702.06124
R.-G. Cai, Z. Cao, Z.-K. Guo, S.-J. Wang, T. Yang, The gravitational wave physics. arXiv:1703.00187
A. Kobakhidze, A. Manning, J. Yue, Gravitational waves from the phase transition of a non-linearly realised electroweak gauge symmetry. arXiv:1607.00883
D. Binosi, A. Quadri, Scalar resonances in the non-linearly realized electroweak theory. JHEP 02, 020 (2013). doi:10.1007/JHEP02(2013)020. arXiv:1210.2637
A. Kobakhidze, Standard model with a distorted higgs sector and the enhanced higgs diphoton decay rate. arXiv:1208.5180
A. Kobakhidze, L. Wu, J. Yue, Electroweak baryogenesis with anomalous Higgs couplings. JHEP 04, 011 (2016). doi:10.1007/JHEP04(2016)011. arXiv:1512.08922
L. Randall, G. Servant, Gravitational waves from warped spacetime. JHEP 05, 054 (2007). doi:10.1088/1126-6708/2007/05/054. arXiv:hep-ph/0607158
T. Konstandin, G. Nardini, M. Quiros, Gravitational backreaction effects on the holographic phase transition. Phys. Rev. D 82, 083513 (2010). doi:10.1103/PhysRevD.82.083513. arXiv:1007.1468
T. Konstandin, G. Servant, Cosmological consequences of nearly conformal dynamics at the TeV scale. JCAP 1112, 009 (2011). doi:10.1088/1475-7516/2011/12/009. arXiv:1104.4791
E. Witten, Cosmological consequences of a light Higgs boson. Nucl. Phys. B 177, 477–488 (1981). doi:10.1016/0550-3213(81)90182-6
S. Arunasalam, A. Kobakhidze, C. Lagger, S. Liang, A. Zhou, Electroweak phase transition in the Standard Model with hidden scale invariance (in progress)
A. Kobakhidze, S. Liang, Standard model with hidden scale invariance and light dilaton. arXiv:1701.04927
C. Caprini, R. Durrer, G. Servant, Gravitational wave generation from bubble collisions in first-order phase transitions: an analytic approach. Phys. Rev. D 77, 124015 (2008). doi:10.1103/PhysRevD.77.124015. arXiv:0711.2593
S.J. Huber, T. Konstandin, Gravitational wave production by collisions: more bubbles. JCAP 0809, 022 (2008). doi:10.1088/1475-7516/2008/09/022. arXiv:0806.1828
C. Caprini, R. Durrer, X. Siemens, Detection of gravitational waves from the QCD phase transition with pulsar timing arrays. Phys. Rev. D 82, 063511 (2010). doi:10.1103/PhysRevD.82.063511. arXiv:1007.1218
S. Anand, U.K. Dey, S. Mohanty, Effects of QCD equation of state on the stochastic gravitational wave background. JCAP 1703, 018 (2017). doi:10.1088/1475-7516/2017/03/018. arXiv:1701.02300
P.E. Dewdney, P.J. Hall, R.T. Schilizzi, T.J. L.W. Lazio, The square kilometre array. Proc IEEE 97, 1482–1496 (2009). doi:10.1109/JPROC.2009.2021005
M.E. Carrington, The effective potential at finite temperature in the standard model. Phys. Rev. D 45, 2933–2944 (1992). doi:10.1103/PhysRevD.45.2933
B.-H. Liu, L.D. McLerran, N. Turok, Bubble nucleation and growth at a baryon number producing electroweak phase transition. Phys. Rev. D 46, 2668–2688 (1992). doi:10.1103/PhysRevD.46.2668
M. Dine, R.G. Leigh, P.Y. Huet, A.D. Linde, D.A. Linde, Towards the theory of the electroweak phase transition. Phys. Rev. D 46, 550–571 (1992). doi:10.1103/PhysRevD.46.550. arXiv:hep-ph/9203203
P.B. Arnold, O. Espinosa, The effective potential and first order phase transitions: beyond leading-order. Phys. Rev. D 47, 3546 (1993). doi:10.1103/PhysRevD.50.6662. doi:10.1103/PhysRevD.47.3546. arXiv:hep-ph/9212235
S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory. Phys. Rev. D 15, 2929–2936 (1977). doi:10.1103/PhysRevD.15.2929. doi:10.1103/PhysRevD.16.1248
C.G. Callan Jr., S.R. Coleman, The fate of the false vacuum. 2. First quantum corrections. Phys. Rev. D 16, 1762–1768 (1977). doi:10.1103/PhysRevD.16.1762
A.D. Linde, Decay of the false vacuum at finite temperature. Nucl. Phys. B 216, 421 (1983). doi:10.1016/0550-3213(83)90293-6
A. Salvio, A. Strumia, N. Tetradis, A. Urbano, On gravitational and thermal corrections to vacuum decay. JHEP 09, 054 (2016). doi:10.1007/JHEP09(2016)054. arXiv:1608.02555
A. Ferrera, Bubble nucleation in phi**4 models at all temperatures. Phys. Rev. D 52, 6717–6729 (1995). doi:10.1103/PhysRevD.52.6717. arXiv:hep-ph/9510379
M.S. Turner, E.J. Weinberg, L.M. Widrow, Bubble nucleation in first order inflation and other cosmological phase transitions. Phys. Rev. D 46, 2384–2403 (1992). doi:10.1103/PhysRevD.46.2384
V.K. Shante, S. Kirkpatrick, An introduction to percolation theory. Adv. Phys.20, 325–357 (1971). doi:10.1080/00018737100101261
G.F. Mazenko, R.M. Wald, W.G. Unruh, Does a phase transition in the early universe produce the conditions needed for inflation? Phys. Rev. D 31, 273–282 (1985). doi:10.1103/PhysRevD.31.273
D.S. Goldwirth, T. Piran, Inhomogeneity and the onset of inflation. Phys. Rev. Lett. 64, 2852–2855 (1990). doi:10.1103/PhysRevLett.64.2852
D.S. Goldwirth, T. Piran, Initial conditions for inflation. Phys. Rept. 214, 223–291 (1992). doi:10.1016/0370-1573(92)90073-9
R. Brandenberger, Initial conditions for inflation? A short review. Int. J. Mod. Phys. D 26, 1740002 (2016). doi:10.1142/S0218271817400028. arXiv:1601.01918
W. Buchmuller, D. Wyler, The effect of dilatons on the electroweak phase transition. Phys. Lett. B 249, 281–285 (1990). doi:10.1016/0370-2693(90)91256-B
M. Hindmarsh, S.J. Huber, K. Rummukainen, D.J. Weir, Gravitational waves from the sound of a first order phase transition. Phys. Rev. Lett. 112, 041301 (2014). doi:10.1103/PhysRevLett.112.041301. arXiv:1304.2433
M. Hindmarsh, S.J. Huber, K. Rummukainen, D.J. Weir, Numerical simulations of acoustically generated gravitational waves at a first order phase transition. Phys. Rev. D 92, 123009 (2015). doi:10.1103/PhysRevD.92.123009. arXiv:1504.03291
J.T. Giblin Jr., J.B. Mertens, Vacuum bubbles in the presence of a relativistic fluid. JHEP 12, 042 (2013). doi:10.1007/JHEP12(2013)042. arXiv:1310.2948
J.T. Giblin, J.B. Mertens, Gravitional radiation from first-order phase transitions in the presence of a fluid. Phys. Rev. D 90, 023532 (2014). doi:10.1103/PhysRevD.90.023532. arXiv:1405.4005
C. Caprini, R. Durrer, Gravitational waves from stochastic relativistic sources: primordial turbulence and magnetic fields. Phys. Rev. D 74, 063521 (2006). doi:10.1103/PhysRevD.74.063521. arXiv:astro-ph/0603476
T. Kahniashvili, A. Kosowsky, G. Gogoberidze, Y. Maravin, Detectability of gravitational waves from phase transitions. Phys. Rev. D 78, 043003 (2008). doi:10.1103/PhysRevD.78.043003. arXiv:0806.0293
T. Kahniashvili, L. Campanelli, G. Gogoberidze, Y. Maravin, B. Ratra, Gravitational radiation from primordial helical inverse cascade MHD turbulence. Phys. Rev. D 78, 123006 (2008). doi:10.1103/PhysRevD.78.123006. doi:10.1103/PhysRevD.79.109901. arXiv:0809.1899
T. Kahniashvili, L. Kisslinger, T. Stevens, Gravitational radiation generated by magnetic fields in cosmological phase transitions. Phys. Rev. D 81, 023004 (2010). doi:10.1103/PhysRevD.81.023004. arXiv:0905.0643
C. Caprini, R. Durrer, G. Servant, The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition. JCAP 0912, 024 (2009). doi:10.1088/1475-7516/2009/12/024. arXiv:0909.0622
M. Maggiore, Gravitational wave experiments and early universe cosmology. Phys. Rept. 331, 283–367 (2000). doi:10.1016/S0370-1573(99)00102-7. arXiv:gr-qc/9909001
R. Jinno, M. Takimoto, Gravitational waves from bubble collisions: analytic derivation. Phys. Rev. D 95, 024009 (2017). doi:10.1103/PhysRevD.95.024009. arXiv:1605.01403
R. van Haasteren et al., Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data. Mon. Not. R. Astron. Soc. 414, 3117–3128 (2011). doi:10.1111/j.1365-2966.2011.18613.x. doi:10.1111/j.1365-2966.2012.20916.x. arXiv:1103.0576
R.M. Shannon et al., Gravitational-wave limits from pulsar timing constrain supermassive black hole evolution. Science 342, 334–337 (2013). doi:10.1126/science.1238012. arXiv:1310.4569
P.B. Demorest, R.D. Ferdman, M.E. Gonzalez, D. Nice, S. Ransom, I.H. Stairs et al., Limits on the stochastic gravitational wave background from the north american nanohertz observatory for gravitational waves. Astrophys. J. 762, 94 (2013)
C.J. Moore, R.H. Cole, C.P.L. Berry, Gravitational-wave sensitivity curves. Class. Quant. Grav. 32, 015014 (2015). doi:10.1088/0264-9381/32/1/015014. arXiv:1408.0740
J.R. Espinosa, M. Quiros, The electroweak phase transition with a singlet. Phys. Lett. B 305, 98–105 (1993). doi:10.1016/0370-2693(93)91111-Y. arXiv:hep-ph/9301285