Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Rung động hấp dẫn và bất ổn siêu phát của các lỗ đen giống Kerr trong một tán vật chất tối
Tóm tắt
Các lỗ đen siêu khối lượng tại tâm các thiên hà có thể được bao quanh bởi một tán vật chất tối. Tán vật chất tối này có thể hình thành một cấu trúc “cusp” xung quanh lỗ đen và biến mất tại một khoảng cách nhất định từ lỗ đen. Dựa trên nền tảng vật lý thú vị này, chúng tôi sử dụng phương pháp phân số liên tiếp để nghiên cứu rung động hấp dẫn của các lỗ đen giống Kerr được bao quanh bởi một tán vật chất tối, tức là các chế độ quasinormal (QNM) và các trạng thái quasibound (QBS). Chúng tôi xem xét các rung động hấp dẫn này của các lỗ đen trong mô hình vật chất tối lạnh (CDM) và mô hình vật chất tối trường vô hướng (SFDM) tại thiên hà LSB, và so sánh chúng với lỗ đen Kerr. Bằng cách kiểm tra các trạng thái tần số QNM/QBS với các tham số khác nhau l, m, a, chúng tôi xác nhận sự tồn tại của các bất ổn siêu phát khi các lỗ đen ở cả hai mô hình CDM và SFDM. Ngoài ra, chúng tôi cũng nghiên cứu ảnh hưởng của các tham số vật chất tối lên QNM/QBS của các lỗ đen trong những hoàn cảnh cụ thể. Trong tương lai, những kết quả này có thể được sử dụng để phát hiện sóng hấp dẫn của các lỗ đen siêu khối lượng, và có thể cung cấp một phương pháp hiệu quả để phát hiện sự tồn tại của vật chất tối.
Từ khóa
#lỗ đen siêu khối lượng #tán vật chất tối #rung động hấp dẫn #chế độ quasinormal #trạng thái quasibound #mô hình vật chất tối lạnh #mô hình vật chất tối trường vô hướngTài liệu tham khảo
J.F. Navarro, C.S. Frenk, S.D.M. White, The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996). arXiv: astro-ph/9508025
J.F. Navarro, C.S. Frenk, S.D.M. White, A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997). arXiv: astro-ph/9611107
Planck Collaboration, R. Adam et al., Planck 2015 results. X. Diffuse component separation: foreground maps. Astron. Astrophys. 594, A10 (2016). arXiv:1502.01588
J.S. Bullock, M. Boylan-Kolchin, Small-scale challenges to the \(\Lambda \)CDM paradigm. Annu. Rev. Astron. Astrophys. 55, 343–387 (2017). arXiv:1707.04256
P. Gondolo, J. Silk, Dark matter annihilation at the galactic center. Phys. Rev. Lett. 83, 1719–1722 (1999). arXiv:astro-ph/9906391
L. Sadeghian, F. Ferrer, C.M. Will, Dark matter distributions around massive black holes: a general relativistic analysis. Phys. Rev. D 88(6), 063522 (2013). arXiv:1305.2619
B.D. Fields, S.L. Shapiro, J. Shelton, Galactic center gamma-ray excess from dark matter annihilation: is there a black hole spike? Phys. Rev. Lett. 113, 151302 (2014). arXiv:1406.4856
Z. Xu, X. Hou, X. Gong, J. Wang, Black hole space-time in dark matter halo. J. Cosmol. Astropart. Phys. 2018, 038–038 (2018)
Z. Xu, J. Wang, M. Tang, Deformed black hole immersed in dark matter spike. JCAP 09, 007 (2021). arXiv:2104.13158
Event Horizon Telescope Collaboration, K. Akiyama et al., First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, L1 (2019). arXiv:1906.11238
LIGO Scientific, Virgo Collaboration, B.P. Abbott et al., GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116(24), 241103 (2016). arXiv:1606.04855
LIGO Scientific, Virgo Collaboration, B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). arXiv:1602.03837
LIGO Scientific, Virgo Collaboration, B.P. Abbott et al., GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119(14), 141101 (2017). arXiv:1709.09660
LIGO Scientific, Virgo Collaboration, B.P. Abbott et al., GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017). arXiv:1710.05832
R. Ruffini, J.A. Wheeler, Introducing the black hole. Phys. Today 24, 1–30 (1971)
C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (1973)
R. Moderski, M. Rogatko, Evolution of a self-interacting scalar field in the spacetime of a higher dimensional black hole. Phys. Rev. D 72, 044027 (2005). arXiv:hep-th/0508175
C.V. Vishveshwara, Scattering of gravitational radiation by a Schwarzschild black-hole. Nature 227, 936–938 (1970)
R.A. Konoplya, A. Zhidenko, Quasinormal modes of black holes: from astrophysics to string theory. Rev. Mod. Phys. 83, 793–836 (2011). arXiv:1102.4014
K.D. Kokkotas, B.G. Schmidt, Quasinormal modes of stars and black holes. Living Rev. Relativ. 2, 2 (1999). arXiv:gr-qc/9909058
B.F. Schutz, C.M. Will, Black hole normal modes: a semianalytic approach. Astrophys. J. Lett. 291, L33–L36 (1985)
S. Iyer, C.M. Will, Black-hole normal modes: a WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering. Phys. Rev. D 35, 3621–3631 (1987)
G. Pöschl, E. Teller, Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Z. Phys. 83, 143–151 (1933)
V. Ferrari, B. Mashhoon, New approach to the quasinormal modes of a black hole. Phys. Rev. D 30, 295–304 (1984)
M.S. Churilova, R.A. Konoplya, A. Zhidenko, Analytic formula for quasinormal modes in the near-extreme Kerr–Newman–de Sitter spacetime governed by a non-Pöschl–Teller potential. Phys. Rev. D 105(8), 084003 (2022). arXiv:2108.04858
E.W. Leaver, An analytic representation for the quasi normal modes of Kerr black holes. Proc. R. Soc. Lond. A 402, 285–298 (1985)
S.R. Dolan, Instability of the massive Klein–Gordon field on the Kerr spacetime. Phys. Rev. D 76, 084001 (2007). arXiv:0705.2880
P.H.C. Siqueira, M. Richartz, Quasinormal modes, quasibound states, scalar clouds, and superradiant instabilities of a Kerr-like black hole. Phys. Rev. D 1062, 024046 (2022). arXiv:2205.00556
W.H. Press, S.A. Teukolsky, Floating orbits, superradiant scattering and the black-hole bomb. Nature 238, 211–212 (1972)
V. Cardoso, O.J.C. Dias, J.P.S. Lemos, S. Yoshida, The black hole bomb and superradiant instabilities. Phys. Rev. D 70, 044039 (2004). arXiv:hep-th/0404096 [Erratum: Phys. Rev. D 70, 049903 (2004)]
T. Damour, N. Deruelle, R. Ruffini, On quantum resonances in stationary geometries. Lett. Nuovo Cim. 15, 257–262 (1976)
S.L. Detweiler, Klein–Gordon equation and rotating black holes. Phys. Rev. D 22, 2323–2326 (1980)
V. Cardoso, S. Yoshida, Superradiant instabilities of rotating black branes and strings. JHEP 07, 009 (2005). arXiv:hep-th/0502206
S. Hod, Stationary scalar clouds around rotating black holes. Phys. Rev. D 86, 104026 (2012). arXiv:1211.3202 [Erratum: Phys. Rev. D 86, 129902 (2012)]
H. Yoshino, H. Kodama, Gravitational radiation from an axion cloud around a black hole: superradiant phase. PTEP 2014, 043E02 (2014). arXiv:1312.2326
R.A. Konoplya, A. Zhidenko, Stability and quasinormal modes of the massive scalar field around Kerr black holes. Phys. Rev. D 73, 124040 (2006). arXiv:gr-qc/0605013
Y.S. Myung, Quasibound states of massive scalar around the Kerr black hole. arXiv:2208.14609
Z.-F. Mai, R.-Q. Yang, H. Lu, Superradiant instability of extremal black holes in STU supergravity. Phys. Rev. D 1052, 024070 (2022). arXiv:2110.14942
Y. Huang, H. Zhang, Quasibound states of charged dilatonic black holes. Phys. Rev. D 1034, 044062 (2021). arXiv:2012.12778
H.S. Vieira, V.B. Bezerra, C.R. Muniz, M.S. Cunha, Quasibound states of scalar fields in the consistent 4D Einstein–Gauss–Bonnet–(Anti-)de Sitter gravity. Eur. Phys. J. C 828, 669 (2022). arXiv:2205.15613
H.S. Vieira, V.B. Bezerra, C.R. Muniz, Instability of the charged massive scalar field on the Kerr–Newman black hole spacetime. Eur. Phys. J. C 8210, 932 (2022). arXiv:2107.02562
C. Gundlach, R.H. Price, J. Pullin, Late time behavior of stellar collapse and explosions 1. Linearized perturbations. Phys. Rev. D 49, 883–889 (1994). arXiv:gr-qc/9307009
R. Moderski, M. Rogatko, Late-time evolution of a charged massless scalar field in the spacetime of a dilaton black hole. Phys. Rev. D 63, 084014 (2001)
R. Moderski, M. Rogatko, Late-time evolution of a self-interacting scalar field in the spacetime of a dilaton black hole. Phys. Rev. D 64, 044024 (2001)
R. Moderski, M. Rogatko, Decay of Dirac massive hair in the background of a spherical black hole. Phys. Rev. D 77, 124007 (2008)
T.V. Fernandes, D. Hilditch, J.P.S. Lemos, V. Cardoso, Quasinormal modes of Proca fields in a Schwarzschild-AdS spacetime. Phys. Rev. D 1054, 044017 (2022). arXiv:2112.03282
R. McManus, E. Berti, C.F.B. Macedo, M. Kimura, A. Maselli, V. Cardoso, Parametrized black hole quasinormal ringdown. II. Coupled equations and quadratic corrections for nonrotating black holes. Phys. Rev. D 100(4), 044061 (2019). arXiv:1906.05155
T. Assumpcao, V. Cardoso, A. Ishibashi, M. Richartz, M. Zilhao, Black hole binaries: ergoregions, photon surfaces, wave scattering, and quasinormal modes. Phys. Rev. D 986, 064036 (2018). arXiv:1806.07909
R.A. Konoplya, A. Zhidenko, A.F. Zinhailo, Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations. Class. Quantum Gravity 36, 155002 (2019)
X. Zhou, S. Chen, J. Jing, Effect of noncircularity on the dynamic behaviors of particles in a disformal rotating black-hole spacetime. Sci. China Phys. Mech. Astron. 655, 250411 (2022). arXiv:2110.03291
P.A. González, A. Övgün, J. Saavedra, Y. Vásquez, Hawking radiation and propagation of massive charged scalar field on a three-dimensional Gödel black hole. Gen. Relativ. Gravit. 506, 62 (2018). arXiv:1711.01865
W. Javed, I. Hussain, A. Övgün, Weak deflection angle of Kazakov–Solodukhin black hole in plasma medium using Gauss–Bonnet theorem and its greybody bonding. Eur. Phys. J. Plus 1371, 148 (2022). arXiv:2201.09879
S. Ponglertsakul, B. Gwak, Massive scalar perturbations on Myers–Perry–de Sitter black holes with a single rotation. Eur. Phys. J. C 8011, 1023 (2020). arXiv:2007.16108
R. Vicente, V. Cardoso, Dynamical friction of black holes in ultralight dark matter. Phys. Rev. D 1058, 083008 (2022). arXiv:2201.08854
R.C. Pantig, A. Övgün, Dark matter effect on the weak deflection angle by black holes at the center of Milky Way and M87 galaxies. Eur. Phys. J. C 82, 391 (2022)
V. Cardoso, K. Destounis, F. Duque, R.P. Macedo, A. Maselli, Black holes in galaxies: environmental impact on gravitational-wave generation and propagation. Phys. Rev. D 1056, L061501 (2022). arXiv:2109.00005
R.A. Konoplya, Black holes in galactic centers: quasinormal ringing, grey-body factors and Unruh temperature. Phys. Lett. B 823, 136734 (2021). arXiv:2109.01640
V.H. Robles, T. Matos, Flat central density profile and constant DM surface density in galaxies from scalar field dark matter. Mon. Not. R. Astron. Soc. 422, 282–289 (2012). arXiv:1201.3032
L.M. Fernández-Hernández, M.A. Rodríguez-Meza, T. Matos, Comparison between two scalar field models using rotation curves of spiral galaxies. J. Phys. Conf. Ser. 10101, 012005 (2018). arXiv:1708.06681
R.G. Daghigh, G. Kunstatter, Spacetime metrics and ringdown waveforms for galactic black holes surrounded by a dark matter spike. Astrophys. J. 9401, 33 (2022). arXiv:2206.04195
J. Liu, S. Chen, J. Jing, Tidal effects of dark matter halo around a galactic black hole. arXiv:2203.14039
R.A. Konoplya, A. Zhidenko, Solutions of the Einstein equations for a black hole surrounded by a galactic halo. Astrophys. J. 9332, 166 (2022). arXiv:2202.02205
X. Qin, S. Chen, Z. Zhang, J. Jing, Polarized image of a rotating black hole surrounded by a cold dark matter halo. Eur. Phys. J. C 832, 159 (2023). arXiv:2301.01551
J. Bamber, J.C. Aurrekoetxea, K. Clough, P.G. Ferreira, Black hole merger simulations in wave dark matter environments. Phys. Rev. D 1072, 024035 (2023). arXiv:2210.09254
C. Zhang, T. Zhu, A. Wang, Gravitational axial perturbations of Schwarzschild-like black holes in dark matter halos. Phys. Rev. D 10412, 124082 (2021). arXiv:2111.04966
C. Zhang, T. Zhu, X. Fang, A. Wang, Imprints of dark matter on gravitational ringing of supermassive black holes. Phys. Dark Universe 37, 101078 (2022). arXiv:2201.11352
Z. Xu, J. Wang, X. Hou, Kerr-anti-de Sitter/de Sitter black hole in perfect fluid dark matter background. Class. Quantum Gravity 3511, 115003 (2018). arXiv:1711.04538
Z. Xu, X. Hou, X. Gong, J. Wang, Kerr–Newman-AdS black hole surrounded by perfect fluid matter in Rastall gravity. Eur. Phys. J. C 786, 513 (2018). arXiv:1711.04542
D. Liu, Y. Yang, S. Wu, Y. Xing, Z. Xu, Z.-W. Long, Ringing of a black hole in a dark matter halo. Phys. Rev. D 10410, 104042 (2021). arXiv:2104.04332
S. Subramanian, S. Ramya, M. Das, K. George, T. Sivarani, T.P. Prabhu, \(Investigating AGN black hole masses and the M_{BH}-relation for low surface brightness galaxies\). Mon. Not. R. Astron. Soc. 4553, 3148–3168 (2016). arXiv:1510.07743
S. Biswas, Massive scalar perturbation of extremal rotating braneworld black hole: superradiant stability analysis. Phys. Lett. B 820, 136597 (2021). arXiv:2106.13837
E. Berti, V. Cardoso, M. Casals, Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions. Phys. Rev. D 73, 024013 (2006). arXiv:gr-qc/0511111 [Erratum: Phys. Rev. D 73, 109902 (2006)]
H.-P. Nollert, Quasinormal modes of Schwarzschild black holes: the determination of quasinormal frequencies with very large imaginary parts. Phys. Rev. D 47, 5253–5258 (1993)
A. Zhidenko, Massive scalar field quasi-normal modes of higher dimensional black holes. Phys. Rev. D 74, 064017 (2006). arXiv:gr-qc/0607133
H. Witek, V. Cardoso, A. Ishibashi, U. Sperhake, Superradiant instabilities in astrophysical systems. Phys. Rev. D 874, 043513 (2013). arXiv:1212.0551
A. Lasenby, C. Doran, J. Pritchard, A. Caceres, S. Dolan, Bound states and decay times of fermions in a Schwarzschild black hole background. Phys. Rev. D 72, 105014 (2005). arXiv:gr-qc/0209090
R. Cotesta, G. Carullo, E. Berti, V. Cardoso, Analysis of ringdown overtones in GW150914. Phys. Rev. Lett. 12911, 111102 (2022). arXiv:2201.00822
W.-H. Ruan, Z.-K. Guo, R.-G. Cai, Y.-Z. Zhang, Taiji program: gravitational-wave sources. Int. J. Mod. Phys. A 3517, 2050075 (2020). arXiv:1807.09495
C. Shi, J. Bao, H. Wang, J.-D. Zhang, Y. Hu, A. Sesana, E. Barausse, J. Mei, J. Luo, Science with the TianQin observatory: preliminary results on testing the no-hair theorem with ringdown signals. Phys. Rev. D 1004, 044036 (2019). arXiv:1902.08922
C.J. Moore, R.H. Cole, C.P.L. Berry, Gravitational-wave sensitivity curves. Class. Quantum Gravity 321, 015014 (2015). arXiv:1408.0740
F. Ferrer, A.M. da Rosa, C.M. Will, Dark matter spikes in the vicinity of Kerr black holes. Phys. Rev. D 968, 083014 (2017). arXiv:1707.06302
V. Cardoso, S. Chakrabarti, P. Pani, E. Berti, L. Gualtieri, Floating and sinking: the Imprint of massive scalars around rotating black holes. Phys. Rev. Lett. 107, 241101 (2011). arXiv:1109.6021
J. Barranco, A. Bernal, J.C. Degollado, A. Diez-Tejedor, M. Megevand, M. Alcubierre, D. Nunez, O. Sarbach, Schwarzschild black holes can wear scalar wigs. Phys. Rev. Lett. 109, 081102 (2012). arXiv:1207.2153
T.J.M. Zouros, D.M. Eardley, Instabilities of massive scalar perturbations of a rotating black hole. Ann. Phys. 118, 139–155 (1979)
H. Furuhashi, Y. Nambu, Instability of massive scalar fields in Kerr–Newman space-time. Prog. Theor. Phys. 112, 983–995 (2004). arXiv: gr-qc/0402037
V. Cardoso, P. Pani, Tests for the existence of black holes through gravitational wave echoes. Nat. Astron. 19, 586–591 (2017). arXiv:1709.01525
M.S. Churilova, Z. Stuchlik, Ringing of the regular black-hole/wormhole transition. Class. Quantum Gravity 377, 075014 (2020). arXiv:1911.11823
R. Dey, N. Afshordi, Echoes in the Kerr/CFT correspondence. Phys. Rev. D 10212, 126006 (2020). arXiv:2009.09027
T. Ikeda, M. Bianchi, D. Consoli, A. Grillo, J.F. Morales, P. Pani, G. Raposo, Black-hole microstate spectroscopy: ringdown, quasinormal modes, and echoes. Phys. Rev. D 1046, 066021 (2021). arXiv:2103.10960
A. Chowdhury, N. Banerjee, Echoes from a singularity. Phys. Rev. D 10212, 124051 (2020). arXiv:2006.16522
M.S. Churilova, R.A. Konoplya, Z. Stuchlik, A. Zhidenko, Wormholes without exotic matter: quasinormal modes, echoes and shadows. JCAP 10, 010 (2021). arXiv:2107.05977
Y. Yang, D. Liu, Z. Xu, Y. Xing, S. Wu, Z.-W. Long, Echoes of novel black-bounce spacetimes. Phys. Rev. D 10410, 104021 (2021). arXiv:2107.06554
Y. Yang, D. Liu, Z. Xu, Z.-W. Long, Ringing and echoes from black bounces surrounded by the string cloud. Eur. Phys. J. C 833, 217 (2023). arXiv:2210.12641
S.R. Wu, B.Q. Wang, D. Liu, Z.W. Long, Echoes of charged black-bounce spacetimes. Eur. Phys. J. C 8211, 998 (2022). arXiv:2201.08415