Graphs and obstructions in four dimensions

Journal of Combinatorial Theory, Series B - Tập 96 - Trang 388-404 - 2006
Hein van der Holst1
1Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands

Tài liệu tham khảo

Bacher, 1995, Multiplicités des valeurs propres et transformations étoile-triangle des graphes, Bull. Soc. Math. France, 123, 517, 10.24033/bsmf.2269 Colin de Verdière, 1990, Sur un nouvel invariant des graphes et un critère de planarité, J. Combin. Theory Ser. B, 50, 11, 10.1016/0095-8956(90)90093-F Y. Colin de Verdière, On a new graph invariant and a criterion of planarity, in: N. Robertson, P. Seymour (Eds.), Graph Structure Theory, Contemporary Mathematics, vol. 147, American Mathematical Society, Providence, RI, 1993, pp. 137–147. Diestel, 2000 Dold, 1972 Gillman, 1987, Generalising Kuratowski's theorem from R2 to R4, Ars Combin., 23A, 135 Hirsch, 1976 H. van der Holst, L. Lovász, A. Schrijver, The Colin de Verdière graph parameter, in: L. Lovász, A. Gyárfás, G. Katona, A. Recski, L. Székely (Eds.), Graph Theory and Combinatorial Biology, Mathematical Studies, vol. 7, Bolyai Society, 1999, pp. 29–85. Lovász, 1998, A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs, Proc. Amer. Math. Soc., 126, 1275, 10.1090/S0002-9939-98-04244-0 Robertson, 1995, Sachs’ linkless embedding conjecture, J. Combin. Theory Ser. B, 64, 185, 10.1006/jctb.1995.1032 Robertson, 2004, Graph minors, XX: Wagner's conjecture, J. Combin. Theory Ser. B, 92, 325, 10.1016/j.jctb.2004.08.001 Shapiro, 1957, Obstructions to the imbedding of a complex in a Euclidean space, I: the first obstruction, Ann. Math., 66, 256, 10.2307/1969998 van Kampen, 1933, Komplexe in Euklidischen Räumen, Hamb. Abh., 9, 72, 10.1007/BF02940628 Wu, 1958, On the realization of complexes in Euclidean spaces I, Sci. Sinica, VII, 251 Wu, 1958, On the realization of complexes in Euclidean space II, Sci. Sinica, VII, 365 Wu, 1959, On the realization of complexes in Euclidean spaces III, Sci. Sinica, VIII, 133