Graphs S(n, k) and a Variant of the Tower of Hanoi Problem

Czechoslovak Mathematical Journal - Tập 47 Số 1 - Trang 95-104 - 1997
Sandi Klavžar1, Uroš Milutinović1
1University of Maribor, PF, Maribor, Slovenia

Tóm tắt

Từ khóa


Tài liệu tham khảo

H.-J. Bandelt, H.M. Mulder, E. Wilkeit: Quasi-median graphs and algebras. J. Graph Theory 18 (1994), 681-703.

N. Claus (= E. Lucas): La Tour d'Hanoi, Jeu de calcul. Science et Nature 1(8) (1884), 127-128.

M.C. Er: An analysis of the generalized Towers of Hanoi problem. BIT 23 (1983), 295-302.

J. Feigenbaum, A.A. Schäffer: Finding the prime factors of strong direct product graphs in polynomial time. Discrete Math. 109 (1992), 77-102.

A.M. Hinz: The Tower of Hanoi. Enseign. Math. 35 (1989), 289-321.

A.M. Hinz: Shortest paths between regular states of the Tower of Hanoi. Inform. Sci. 63 (1992), 173-181.

A.M. Hinz: Pascal's triangle and the Tower of Hanoi. Amer. Math. Monthly 99 (1992), 538-544.

A.M. Hinz, A. Schief: The average distance on the Sierpiński gasket. Probab. Theory Related Fields 87 (1990), 129-138.

W. Imrich, H. Izbicki: Associative products of graphs. Monatsh. Math. 80 (1975), 277-281.

S. L. Lipscomb: A universal one-dimensional metric space. TOPO 72—General Topology and its Applications, Second Pittsburgh Internat. Conf., Volume 378 of Lecture Notes in Math.. Springer-Verlag, New York, 1974, pp. 248-257.

S. L. Lipscomb: On imbedding finite-dimensional metric spaces. Trans. Amer. Math. Soc. 211 (1975), 143-160.

S. L. Lipscomb, J. C. Perry: Lipscomb's L(A) space fractalized in Hilbert's l 2 (A) space. Proc. Amer. Math. Soc. 115 (1992), 1157-1165.

U. Milutinović: Completeness of the Lipscomb space. Glas. Mat. Ser. III 27(47) (1992), 343-364.

U. Milutinović: A universal separable metric space of Lipscomb's type. Preprint Series Univ. of Ljubljana 32 (1994), 443.

E. Wilkeit: Isometric embeddings in Hamming graphs. J. Combin. Theory Ser. B 50 (1990), 179-197.