Graphitic carbon nitride synthesized by simple pyrolysis: role of precursor in photocatalytic hydrogen production

New Journal of Chemistry - Tập 43 Số 18 - Trang 6909-6920
Mohammed Ismael1,2,3,4,5, Ying Wu6,7,8,9, Dereje H. Taffa1,2,3,4,5, Patrick Bottke1,2,3,4,5, Michael Wark1,2,3,4,5
126129 Oldenburg
2Carl von Ossietzky University Oldenburg
3Germany
4Institute of Chemistry, Technical Chemistry, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
5Technical Chemistry
6China
7Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
8Jinhua 321004
9Zhejiang Normal University

Tóm tắt

g-C3N4 with structural defects and low polymerization synthesized by urea as the precursor for photocatalytic H2 production under visible light.

Từ khóa


Tài liệu tham khảo

Chen, 2010, Chem. Rev., 110, 6503, 10.1021/cr1001645

Ge, 2012, Appl. Catal., B, 117–118, 268, 10.1016/j.apcatb.2012.01.021

Fujishima, 1972, Nature, 236, 37, 10.1038/238037a0

Schneider, 2014, Chem. Rev., 14, 9919, 10.1021/cr5001892

Sasikala, 2013, J. Colloid Interface Sci., 409, 135, 10.1016/j.jcis.2013.07.047

Cai, 2014, J. Mater. Chem. A, 2, 5280, 10.1039/C3TA15262F

Christoforidis, 2017, ChemCatChem, 9, 1523, 10.1002/cctc.201601659

Chen, 2017, Nanomaterials, 7, 62, 10.3390/nano7030062

Zhang, 2016, Angew. Chem., Int. Ed., 55, 15712, 10.1002/anie.201607375

Patnaik, 2016, RSC Adv., 6, 46929, 10.1039/C5RA26702A

Takata, 2017, Dalton Trans., 46, 10529, 10.1039/C7DT00867H

Zhang, 2011, Chem. Commun., 47, 3918, 10.1039/c0cc04697c

Elsherir, 2015, J. Nat. Gas Sci. Eng., 24, 346, 10.1016/j.jngse.2015.03.046

Huang, 2010, Int. J. Hydrogen Energy, 35, 12005, 10.1016/j.ijhydene.2010.08.113

Abbas, 2010, Int. J. Hydrogen Energy, 35, 1160, 10.1016/j.ijhydene.2009.11.036

Eatwell-Hall, 2010, Int. J. Hydrogen Energy, 35, 3168, 10.1016/j.ijhydene.2010.09.003

Hao, 2012, Int. J. Hydrogen Energy, 37, 15038, 10.1016/j.ijhydene.2012.08.021

Navarro, 2009, Energy Environ. Sci., 2, 35, 10.1039/B808138G

Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G

Wang, 2009, Nat. Mater., 8, 76, 10.1038/nmat2317

Liu, 2010, J. Am. Chem. Soc., 132, 11642, 10.1021/ja103798k

Wang, 2009, J. Am. Chem. Soc., 131, 1680, 10.1021/ja809307s

Kessler, 2017, Nat. Rev. Mater., 2, 17030, 10.1038/natrevmats.2017.30

Zhang, 2009, J. Am. Chem. Soc., 131, 50, 10.1021/ja808329f

Strataki, 2010, Catal. Today, 151, 53, 10.1016/j.cattod.2010.03.036

Xia, 2008, Mater. Lett., 62, 1126, 10.1016/j.matlet.2007.07.062

Shifu, 2005, Powder Technol., 160, 198, 10.1016/j.powtec.2005.08.012

Mao, 2013, Catal. Sci. Technol., 3, 1253, 10.1039/c3cy20822b

Ong, 2016, Chem. Rev., 116, 7159, 10.1021/acs.chemrev.6b00075

Yang, 2013, Adv. Mater., 25, 2452, 10.1002/adma.201204453

Yan, 2011, J. Alloys Compd., 509, L26, 10.1016/j.jallcom.2010.09.201

Li, 2009, Appl. Phys., 94, 387, 10.1007/s00339-008-4816-4

Yan, 2009, Langmuir, 25, 10397, 10.1021/la900923z

Dong, 2011, J. Mater. Chem., 21, 15171, 10.1039/c1jm12844b

Dong, 2012, Catal. Sci. Technol., 2, 1332, 10.1039/c2cy20049j

Groenewolt, 2005, Adv. Mater., 17, 1789, 10.1002/adma.200401756

Xu, 2013, Appl. Catal., B, 129, 182, 10.1016/j.apcatb.2012.08.015

Zhang, 2010, J. Am. Chem. Soc., 132, 6294, 10.1021/ja101749y

Ni, 2016, Catal. Sci. Technol., 6, 6448, 10.1039/C6CY00580B

Dong, 2015, Environ. Sci. Technol., 49, 12432, 10.1021/acs.est.5b03758

Zhang, 2010, Angew. Chem., Int. Ed., 49, 441, 10.1002/anie.200903886

Wang, 2010, Chem. Mater., 22, 5119, 10.1021/cm1019102

Wang, 2009, Adv. Mater., 21, 1609, 10.1002/adma.200802627

Xiang, 2011, J. Phys. Chem. C, 115, 7355, 10.1021/jp200953k

Sun, 2015, J. Colloid Interface Sci., 451, 108, 10.1016/j.jcis.2015.03.059

Akatsuka, 2012, J. Phys. Chem. C, 116, 12426, 10.1021/jp302417a

Liu, 2016, J. Phys. Chem. C, 116, 10381, 10.1021/acs.jpcc.6b01705

Di, 2016, Carbon, 107, 1, 10.1016/j.carbon.2016.05.028

Liu, 2016, Mater. Sci. Semicond. Process., 46, 59, 10.1016/j.mssp.2015.11.013

Hong, 2012, J. Mater. Chem., 22, 15006, 10.1039/c2jm32053c

Zhang, 2013, Int. J. Photoenergy, 1

Zhang, 2017, J. Photochem. Photobiol., A, 332, 32, 10.1016/j.jphotochem.2016.08.005

Martin, 2014, Angew. Chem., Int. Ed., 53, 9240, 10.1002/anie.201403375

Wang, 2009, J. Am. Chem. Soc., 131, 1680, 10.1021/ja809307s

Zhang, 2012, Nanoscale, 4, 5300, 10.1039/c2nr30948c

Martha, 2013, J. Mater. Chem. A, 1, 7816, 10.1039/c3ta10851a

Chen, 2019, J. Colloid Interface Sci., 534, 163, 10.1016/j.jcis.2018.09.025

Chena, 2019, Fuel, 241, 1, 10.1016/j.fuel.2018.12.011

Yu, 2016, Sol. Energy, 139, 355, 10.1016/j.solener.2016.10.014

He, 2015, Sol. Energy Mater. Sol. Cells, 137, 175, 10.1016/j.solmat.2015.01.037

Huang, 2017, Angew. Chem., Int. Ed., 56, 11860, 10.1002/anie.201706549

Chen, 2019, Angew. Chem., Int. Ed., 10.1002/anie.201901361

Yu, 2019, Angew. Chem., Int. Ed., 58, 3880, 10.1002/anie.201813967

Chen, 2018, Adv. Funct. Mater., 28, 1804284, 10.1002/adfm.201804284

Liu, 2017, Nano Energy, 41, 738, 10.1016/j.nanoen.2017.10.031

Yu, 2018, Nano Energy, 50, 383, 10.1016/j.nanoen.2018.05.053

Huang, 2017, J. Mater. Chem. A, 5, 17452, 10.1039/C7TA04639A

Wang, 2014, RSC Adv., 4, 40029, 10.1039/C4RA06035K

Ji, 2013, Chem. Eng. J., 218, 183, 10.1016/j.cej.2012.12.033

Xu, 2011, Int. J. Hydrogen Energy, 36, 13501, 10.1016/j.ijhydene.2011.08.052

Liu, 2011, J. Mater. Chem., 21, 14398, 10.1039/c1jm12620b

Schaber, 2004, Thermochim. Acta, 424, 131, 10.1016/j.tca.2004.05.018

Costa, 1988, J. Therm. Anal. Calorim., 34, 423, 10.1007/BF01913181

Niu, 2012, Adv. Funct. Mater., 22, 4763, 10.1002/adfm.201200922

Xu, 2014, Nanoscale, 6, 10307, 10.1039/C4NR02792B

Zhang, 2014, Chem. Eng. J., 246, 277, 10.1016/j.cej.2014.02.068

Purvis, 2000, J. Am. Chem. Soc., 122, 1808, 10.1021/ja992910q

Zhang, 2017, Catal. Sci. Technol., 7, 452, 10.1039/C6CY02318E

Yan, 2010, Dalton Trans., 39, 1488, 10.1039/B914110C

Maeda, 2009, J. Phys. Chem. C, 113, 4940, 10.1021/jp809119m

Chai, 2012, Phys. Chem. Chem. Phys., 14, 16745, 10.1039/c2cp42484c

Zhang, 2012, J. Mater. Chem., 22, 8083, 10.1039/c2jm00097k

Fang, 2015, J. Mater. Chem. A, 3, 13819, 10.1039/C5TA02257F

Dong, 2012, J. Mater. Chem., 22, 1160, 10.1039/C1JM14312C

Zhang, 2012, J. Mater. Chem., 22, 8083, 10.1039/c2jm00097k

Yang, 2011, Appl. Phys. A: Mater. Sci. Process., 105, 161, 10.1007/s00339-011-6471-4

Li, 2015, J. Mater. Chem. A, 3, 21016, 10.1039/C5TA04233J

Panneri, 2017, Environ. Sci. Pollut. Res., 24, 8609, 10.1007/s11356-017-8538-z

Zhang, 2014, Adv. Mater., 26, 4121, 10.1002/adma.201400573

Shalom, 2013, J. Am. Chem. Soc., 135, 7118, 10.1021/ja402521s

Xu, 2013, Phys. Chem. Chem. Phys., 15, 7657, 10.1039/c3cp44687e

Hu, 2017, Chem. Mater., 29, 5080, 10.1021/acs.chemmater.7b00069

Katsumata, 2014, RSC Adv., 4, 21405, 10.1039/C4RA02511C

Marschall, 2013, Photochem. Photobiol. Sci., 12, 671, 10.1039/C2PP25200G

Ma, 2017, Catal. Sci. Technol., 7, 3275, 10.1039/C7CY00788D

Wang, 2012, ACS Catal., 2, 1596, 10.1021/cs300240x

Wang, 2012, Angew. Chem., Int. Ed., 51, 68, 10.1002/anie.201101182

Wu, 2012, J. Alloys Compd., 520, 213, 10.1016/j.jallcom.2012.01.021

Yu, 2016, Appl. Catal., B, 187, 301, 10.1016/j.apcatb.2016.01.045

Wirth, 2014, Phys. Chem. Chem. Phys., 16, 15917, 10.1039/C4CP02021A

He, 2014, Ind. Eng. Chem. Res., 53, 5905, 10.1021/ie4043856

Yu, 2008, J. Photochem. Photobiol., A, 200, 301, 10.1016/j.jphotochem.2008.08.007

Zhang, 2014, Adv. Mater., 26, 805, 10.1002/adma.201303611

Jing, 2006, Sol. Energy Mater. Sol. Cells, 90, 1773, 10.1016/j.solmat.2005.11.007

Khabashesku, 2000, Chem. Mater., 12, 3264, 10.1021/cm000328r

Yan, 2010, Dalton Trans., 39, 1488, 10.1039/B914110C

Chai, 2012, Phys. Chem. Chem. Phys., 14, 16745, 10.1039/c2cp42484c