Graphite nanoparticles paper supercapacitor based on gel electrolyte
Tóm tắt
In this study, three-type paper supercapacitors based on the polyvinylidene fluoride (PVDF) and polyvinyl alcohol (PVA)/phosphoric acid (H3PO4) gel electrolytes and graphite nanoparticles (GNPs) electrodes have been fabricated. The gel electrolytes and electrodes films have been coated on the paper using push coating and then characterized by scanning electron microscopy (SEM). In two types of the paper supercapacitors, on the PVDF gel electrolyte film, a layer of PVA/water and BaTiO3 as a gel separator film has been coated. The specific capacitance of the paper supercapacitors using cyclic voltammetry (CV) and galvanostatic (charge–discharge) methods at the scan rates 20 and 150 mV s−1 have been investigated. The paper supercapacitor based on the BaTiO3 separator film showed higher specific capacitance (312 F g−1) compared to other samples. Also, using electrochemical impedance spectroscopy (EIS), the Nyquist and Bode curves of paper supercapacitors have been measured. For the paper supercapacitors based on the PVDF gel electrolyte film and BaTiO3 separator film using the Nyquist curves, the equivalent series resistance (ESR) was 306 Ω and 125 Ω, respectively. The paper supercapacitor based on BaTiO3 gel separator structure represents a new type of flexible supercapacitor with high performance that can be applied to electronic devices.
Tài liệu tham khảo
Khan, J., Nasir, U.: Voltage stabilization of hybrid micro-grid using super capacitors. J. Power Energy Eng. 3, 1–9 (2015)
Lin, Y.L., Kyung, C.M., Yasuura, H., Liu, Y.: Smart Sensors and Systems. Springer International Publishing, Switzerland (2015)
Rafal, K., Morin, B., Roboam, X., Bru, E., Turpin, C., Piquet, H.: Hybridization of an aircraft emergency electrical network: experimentation and benefits validation. In: Vehicle Power and Propulsion Conference (VPPC). IEEE (2010)
Kady, M.F., Ihns, M., Li, M., Hwang, J.Y., Mousavi, M.F., Chaney, L., Lech, A.T., Kaner, R.B.: Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. 112, 4233–4238 (2015)
Burke, A.F.: Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proc. IEEE 95, 806–820 (2007)
Lobato, B., Suarez, L., Guardia, L., Centeno, T.A.: Capacitance and surface of carbons in supercapacitors. Carbon 122, 434–445 (2017)
Afzal, A., Abuilaiwi, F.A., Habib, A., Awais, M., Waje, S.B., Atieh, M.A.: Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J. Power Sources 352, 174–186 (2017)
Soin, N., Roy, S.S., Mitra, S.K., Thundatc, T., McLaughlin, J.A.: Nanocrystallin ruthenium oxide dispersed few layered graphene (FLG) nanoflakes as supercapacitor electrodes. J. Mater. Chem. 22, 14944–14950 (2012)
Wang, Y., Song, Y., Xia, Y.: Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016)
Shieh, J.Y., Tsai, S.Y., Li, B.Y., Yu, H.H.: High-performance flexible supercapacitor based on porous array electrodes. Mater. Chem. Phys. 195, 114–122 (2017)
Obeidat, A.M., Gharaibeh, M.A., Obaidat, M.: Solid-state supercapacitors with ionic liquid gel polymer electrolyte and polypyrrole electrodes for electrical energy storage. J. Energy Storage 13, 123–128 (2017)
Pandolfo, A.G., Hollenkamp, A.F.: Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006)
Talapatra, S., Kar, S., Pal, S.K., Vajtai, R., Ci, L., Victor, P., Shaijumon, M.M., Kaur, S., Nalamasu, O., Ajayan, P.M.: Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1, 112–116 (2006)
Shieh, J.Y., Zhang, S.H., Wu, C.H., Yu, H.H.: A facile method to prepare a high performance solid-state flexible paper-based supercapacitor. Appl. Surf. Sci. 313, 704–710 (2014)
Hu, S., Rajamani, R., Yu, X.: Flexible solid-state paper based carbon nanotube supercapacitor. Appl. Phys. Lett. 100, 104103–104104 (2012)
Li, J., Cheng, X., Sun, J., Brand, C., Shashurin, A., Reeves, M., Keidar, M.: Paper-based ultracapacitors with carbon nanotubes-graphene composites. Appl. Phys. Lett. 115, 164301–164305 (2014)
Ping, Y., Gong, Y., Fua, Q., Pan, C.: Preparation of three-dimensional graphene foam for high performance supercapacitors. Prog. Nat. Sci. Mater. Int. 27, 177–181 (2017)
Shieh, J.Y., Wu, C.H., Tsai, S.Y., Yu, H.H.: Fabrication and characterization of a sandpaper-based flexible energy storage. Appl. Surf. Sci. 364, 21–28 (2016)
Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)
Saha, D., Li, Y., Bi, Z., Chen, J., Keum, J.K., Hensley, D.K., Grappe, H.A., Meyer, H.M., Dai, S., Paranthaman, M.P., Naskar, A.K.: Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30, 900–910 (2014)
Gonzalez, A., Goikolea, E., Barrena, J.A., Mysyk, R.: Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)
Sharifi, F., Ghobadian, S., Cavalcanti, F.R., Hashemi, N.: Paper-based devices for energy applications. Renew. Sustain. Energy Rev. 52, 1453–1472 (2015)
Simagis Live Smart Web Pathology: Smart Imaging Technologies Co. (2017). http://host.simagis.com
Zhang, Y.Z., Wang, Y., Cheng, T., Lai, W.Y., Pang, H., Huang, W.: Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem. Soc. Rev. 44, 5181–5199 (2015)
Yoon, Y., Lee, K., Baik, C., Yoo, H., Min, M., Park, Y., Lee, S.M., Lee, H.: Anti-solvent derived non-stacked reduced graphene oxide for high performance supercapacitors. Adv. Mater. 32, 4437–4444 (2013)
Bello, A., Barzegar, F., Momodu, D., Dangbegnon, J., Taghizadeh, F., Fabiane, M., Manyala, N.: Asymmetric supercapacitor based on nanostructured graphene foam/polyvinyl alcohol/formaldehyde and activated carbon electrodes. J. Power Sources 273, 305–311 (2015)
Niu, Z., et al.: Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ. Sci. 4, 1440–1446 (2011)
Peng, C., Lang, J., Xu, S., Wang, X.: Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitor. RSC Adv. 4, 54662–54667 (2014)
FekriAval, L., Elahi, S.M., Darabi, E., Sebt, S.A.: Comparison of the MOS capacitor hydrogen sensors with different SiO2 film thicknesses and a Ni-gate film in a 4% hydrogen–nitrogen mixture. Sens. Actuators B 216, 367–373 (2015)
Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)
Kalam, A., Bae, J.: Low-cost, high-efficiency conductive papers fabricated using multi-walled carbon nanotubes, carbon blacks and polyvinyl alcohol as conducting agents. ECS J. Solid State Sci. Technol. 4, M41–M45 (2015)
Karthika, P., Rajalakshmi, N., Dhathathreyan, K.S.: Flexible polyester cellulose paper supercapacitor with a gel electrolyte. Chem. Phys. Chem. 14, 3822–3826 (2013)
Hu, L., Wu, H., Cui, Y.: Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl. Phys. Lett. 96, 183502–183503 (2010)
Chena, Q., Lic, X., Zang, X., Cao, Y., He, Y., Lid, P., Wang, K., Wei, J., Wud, D., Zhu, H.: Effect of different gel electrolytes on graphene based solid-state supercapacitors. RSC Adv. 4, 36253–36256 (2014)
Gao, Y., Zhou, Y.S., Xiong, W., Jiang, L.J., Mahjouri-samani, M., Thirugnanam, P., Huang, X., Wang, M.M., Jiang, L., Lu, Y.F.: Transparent, flexible, and solid-state supercapacitors based on graphene electrodes. APL Mater. 1, 012101–012107 (2013)
Lust, E., Nurk, G., Janes, A., Arulepp, M., Permann, L., Nigu, P., Moller, P.: Electrochemical properties of nanoporous carbon electrodes. Condens. Matter Phys. 5, 307–328 (2002)
Song, R., Jin, H., Li, X., Fei, L., Zhao, Y., Huang, H., Chan, H.L.W., Wang, Y., Chai, Y.: A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes. J. Mater. Chem. A 3, 14963–14970 (2015)
Dai, S., Xu, W., Xi, Y., Wang, M., Gu, X., Guo, D., Hu, C.: Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor. Nano Energy 19, 363–372 (2016)