Graphene scrolls coated Sb2S3 nanowires as anodes for sodium and lithium ion batteries
Tài liệu tham khảo
Smith, 2010, Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries, J. Electrochem. Soc., 157, A196, 10.1149/1.3268129
Dunn, 2011, Electrical energy storage for the grid: A battery of choices, Science, 334, 928, 10.1126/science.1212741
Choi, 2016, Promise and reality of post-lithium-ion batteries with high energy densities, Nat. Rev. Mater., 1, 16013, 10.1038/natrevmats.2016.13
Peng, 2017, Mesoporous single-crystal-like TiO2 mesocages threaded with carbon nanotubes for high-performance electrochemical energy storage, Nano Energy, 35, 44, 10.1016/j.nanoen.2017.03.003
Harlow, 2013, Ultra high precision study on high capacity cells for large scale automotive application, J. Electrochem. Soc., 160, A2306, 10.1149/2.096311jes
Goodenough, 2014, A perspective on electrical energy storage, MRS Commun., 4, 135, 10.1557/mrc.2014.36
Wu, 2012, Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries, Nanoscale, 4, 2526, 10.1039/c2nr11966h
Pan, 2013, Template-Free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries, Angew. Chem. Int. Ed., 52, 2226, 10.1002/anie.201209535
Chen, 2012, High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites, ACS Nano, 6, 4319, 10.1021/nn300920e
Slater, 2013, Sodium-Ion batteries, Adv. Funct. Mater., 23, 947, 10.1002/adfm.201200691
Dahbi, 2014, Negative electrodes for Na-ion batteries, Phys. Chem. Chem. Phys., 16, 15007, 10.1039/c4cp00826j
Pan, 2013, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energ. Environ. Sci., 6, 2338, 10.1039/c3ee40847g
Nie, 2017, Prussian blue analogue with fast kinetics through electronic coupling for sodium ion batteries, ACS Appl. Mater. Interfaces, 9, 20306, 10.1021/acsami.7b05178
Yabuuchi, 2014, Research development on sodium-ion batteries, Chem. Rev., 114, 6, 10.1021/cr500192f
Jian, 2016, Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode, Adv. Energy Mater., 6
Billaud, 2014, β-NaMnO2: A high-performance cathode for sodium-ion batteries, J. Am. Chem. Soc., 136, 17243, 10.1021/ja509704t
Nie, 2015, Flexible metal–organic frameworks as superior cathodes for rechargeable sodium-ion batteries, J. Mater. Chem. A, 3, 16590, 10.1039/C5TA03197D
Nie, 2014, From biomolecule to Na3V2(PO4)(3)/nitrogen-decorated carbon hybrids: Highly reversible cathodes for sodium-ion batteries, J. Mater. Chem. A, 2, 18606, 10.1039/C4TA03922J
Raju, 2014, Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition, Nano Lett., 14, 4119, 10.1021/nl501692p
Le, 2017, Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2–graphene nanocomposite enables high-performance sodium-ion capacitors, ACS Nano, 11, 2952, 10.1021/acsnano.6b08332
Wu, 2017, MoS2-nanosheet-decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries, ChemElectroChem, 4, 1560, 10.1002/celc.201700060
Chevrier, 2011, Challenges for Na-ion negative electrodes, J. Electrochem. Soc., 158, A1011, 10.1149/1.3607983
Nie, 2014, Prussian blue analogues: A new class of anode materials for lithium ion batteries, J. Mater. Chem. A, 2, 5852, 10.1039/C4TA00062E
Pang, 2014, Synthesis of NASICON-type structured NaTi2(PO4)(3)-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries, Nanoscale, 6, 6328, 10.1039/C3NR06730K
Wang, 2014, All organic sodium-ion batteries with Na4C8H2O6, Angew. Chem. Int. Ed., 53, 5892, 10.1002/anie.201400032
Li, 2015, Electrochemically grown nanocrystalline V2O5 as high-performance cathode for sodium-ion batteries, J. Power Sources, 285, 418, 10.1016/j.jpowsour.2015.03.086
Pei, 2015, Phosphorus nanoparticles encapsulated in graphene scrolls as a high-performance anode for sodium-ion batteries, ChemElectroChem, 2, 1652, 10.1002/celc.201500251
Qian, 2014, Synergistic Na- storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-Ion batteries, Nano Lett., 14, 1865, 10.1021/nl404637q
Schulz, 2015, Covalently bonded compounds of heavy group 15/16 elements –Synthesis, structure and potential application in material sciences, Coord. Chem. Rev., 297–298, 49, 10.1016/j.ccr.2014.11.003
Xie, 2015, Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries, Nano Energy, 13, 208, 10.1016/j.nanoen.2015.02.022
Farbod, 2014, Anodes for sodium ion batteries based on tin–germanium–antimony alloys, ACS Nano, 8, 4415, 10.1021/nn4063598
Nam, 2015, High-Performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na-ion batteries, Small, 11, 2885, 10.1002/smll.201500491
Yu, 2013, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries, Nature Commun., 4, 2922, 10.1038/ncomms3922
Zhu, 2015, High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries, Nanoscale, 7, 3309, 10.1039/C4NR05242K
Chen, 2015, High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder, Adv. Energy Mater., 5, 10.1002/aenm.201401826
Wu, 2015, Hydrothermal synthesis of unique hollow hexagonal prismatic pencils of Co3V2O8
⋅n □H2O: A new anode material for lithium-ion batteries, Angew. Chem. Int. Ed., 54, 10787, 10.1002/anie.201503487
Shioyama, 2003, A new route to carbon nanotubes, Carbon, 41, 179, 10.1016/S0008-6223(02)00278-6
Yan, 2013, Nanowire templated semihollow bicontinuous graphene scrolls: Designed construction, mechanism, and enhanced energy storage performance, J. Am. Chem. Soc., 135, 18176, 10.1021/ja409027s
Shi, 2010, A translational nanoactuator based on carbon nanoscrolls on substrates, Appl. Phys. Lett., 96, 053115, 10.1063/1.3302284
Shi, 2010, Tunable water channels with carbon nanoscrolls, Small, 6, 739, 10.1002/smll.200902286
Patra, 2009, Nanodroplet activated and guided folding of graphene nanostructures, Nano Lett., 9, 3766, 10.1021/nl9019616
Xiong, 2016, Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets, ACS Nano, 10, 10953, 10.1021/acsnano.6b05653
Yao, 2017, Unveiling the unique phase transformation behavior and sodiation kinetics of 1D van der Waals Sb2S3Anodes for Sodium Ion Batteries, Adv. Energy Mater., 7, 1602149, 10.1002/aenm.201602149
Nie, 2017, Mesoporous silicon anodes by using polybenzimidazole derived pyrrolic N-enriched carbon toward high-energy Li-ion batteries, ACS Energy Lett., 2, 1279, 10.1021/acsenergylett.7b00286
Jiang, 2016, Effect of graphene modified Cu current collector on the performance of Li4Ti5O12 anode for lithium-ion batteries, ACS Appl. Mater. Interfaces, 8, 30926, 10.1021/acsami.6b10038
Bhide, 2014, Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2, Phys. Chem. Chem. Phys., 16, 1987, 10.1039/C3CP53077A
Ponrouch, 2012, In search of an optimized electrolyte for Na-ion batteries, Energy Environ. Sci., 5, 8572, 10.1039/c2ee22258b