Graphene saturable absorbers applications in fiber lasers

Peng Xi1, Yixin Yan1
1Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin, 150080, China

Tóm tắt

AbstractTwo-dimensional materials are widely used in a variety of fields, such as medical treatment, industrial preparation, machining, etc. In this review, we have made a detailed description of the development of fiber lasers as well as the evolution of two-dimensional materials, especially graphene. In addition, we describe the optical properties of graphene and its preparations, for instance, chemical exfoliatio, liquid phase exfoliation, electrochemical technique, chemical vapor deposition, supercritical fluid exfoliation, and thermal exfoliation. Meanwhile, we also summarized several types of graphene saturable absorbers like all fiber, D-shaped, and optical deposition. Furthermore, we summarize the optical applications of fiber lasers based on graphene. Finally, we also take a look at the future perspectives of graphene and discuss the future applications of graphene in the field of optics. It is note worth that future fiber lasers will use more heterostructures or gas-solid mixtures to prepare saturable absorbers.

Từ khóa


Tài liệu tham khảo

Ahmad, H., Ooi, S.I., Tiu, Z.C., Ismail, M.F., Zulkfili, M.Z., Yasin, M., Thambiratnam, K.: Passively Q-switched thulium fluoride fiber laser operating in S-band region using N-doped graphene saturable absorber. Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01815-2

Chakravarty, U., Gurram, S., Kuruvilla, A., Upadhyaya, B.N., Bindra, K.S.: Short pulse generation in active Q-switched Yb-doped all fiber laser and its amplification. Opt. Laser Technol. 109, 186–192 (2019). https://doi.org/10.1016/j.optlastec.2018.07.074

Li, L., et al.: Mode-Locked Er-Doped Fiber Laser by Using MoS2/SiO2 Saturable Absorber. Nanoscale Res. Lett. 14(1), 59 (2019). https://doi.org/10.1186/s11671-019-2888-z

Salman, A.A., Al-Janabi, A.: Triple-wavelength Q-switched ytterbium-doped fiber laser based on tungsten oxide as saturable absorber. Microw. Opt. Technol. Lett. 62(6), 2257–2262 (2020). https://doi.org/10.1002/mop.32324

Salman, A.M., Al-Janabi, A.: Nickel nanoparticles Saturable absorber for multiwavelength pulses generation in ytterbium-doped Fiber laser. Fiber Integr. Opt. 39(3), 109–121 (2020). https://doi.org/10.1080/01468030.2020.1768607

Song, H., Wang, D., Wang, Q., Li, L.: Passively Q-switched all-fiber lasers generating cylindrical vector beams with 2-dimensional material saturable absorbers. Opt. Fiber Technol. 45, 71–76 (2018). https://doi.org/10.1016/j.yofte.2018.06.001

Wang, S., Sun, X., Luo, Y., Peng, G.: Surface plasmon resonance sensor based on D-shaped hi-bi photonic crystal fiber. Opt. Commun. 467, 125675 (2020). https://doi.org/10.1016/j.optcom.2020.125675

Pathak, A.K., Singh, V.K.: Theoretical assessment of D-shaped optical fiber chemical sensor associated with nanoscale silver strip operating in near-infrared region. Opt. Quantum Electron. 52(4), (2020). https://doi.org/10.1007/s11082-020-02316-6

Yu, H., Chong, Y., Zhang, P., Ma, J., Li, D.: A D-shaped fiber SPR sensor with a composite nanostructure of MoS2-graphene for glucose detection. Talanta. 219, 121324 (2020). https://doi.org/10.1016/j.talanta.2020.121324

Zakaria, R., Mezher, M.H., Zahid, A.Z.G., Rohizat, N.S., Patel, S.K., Amiri, I.S.: Nonlinear studies of graphene oxide and its application to moisture detection in transformer oil using D-shaped optical fibre. J. Mod. Opt. 67(7), 619–627 (2020). https://doi.org/10.1080/09500340.2020.1760387

Kasim, N., Latiff, A.A., Rusdi, M.F.M., Hisham, M.B., Harun, S.W., Razak, N.F.: Short-pulsed Q-switched thulium doped fiber laser with graphene oxide as a saturable absorber. Optik. 168, 462–466 (2018). https://doi.org/10.1016/j.ijleo.2018.04.117

Mohammed, D.Z., Al-Janabi, A.H.: Passively Q-switched erbium doped fiber laser based on double walled carbon nanotubes-polyvinyl alcohol saturable absorber. Laser Phys. 26(11), 115108 (2016). https://doi.org/10.1088/1054-660x/26/11/115108

Mohsin Al-Hayali, S.K., Hadi Al-Janabi, A.: Triple-wavelength passively Q-switched ytterbium-doped fibre laser using zinc oxide nanoparticles film as a saturable absorber. J. Mod. Opt. 65(13), 1559–1564 (2018). https://doi.org/10.1080/09500340.2018.1455922

Jariwala, D., Sangwan, V.K., Lauhon, L.J., Marks, T.J., Hersam, M.C.: Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano. 8(2), 1102–1120 (2014). https://doi.org/10.1021/nn500064s

Chen, B., Zhang, X., Wu, K., Wang, H., Wang, J., Chen, J.: Q-switched fiber laser based on transition metal dichalcogenides MoS(2), MoSe (2), WS (2), and WSe (2). Opt. Express. 23(20), 26723–26737 (2015). https://doi.org/10.1364/OE.23.026723

Mak, K.F., Shan, J.: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics. 10(4), 216–226 (2016). https://doi.org/10.1038/nphoton.2015.282

Tan, C.-D., Min, F., Wang, M., Zhang, H.-R., Zhang, Z.-H.: Discovering patterns with weak-wildcard gaps. IEEE Access. 4, 4922–4932 (2016). https://doi.org/10.1109/access.2016.2593953

Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (Nov 2012). https://doi.org/10.1038/nnano.2012.193

Yun, W.S., Han, S.W., Hong, S.C., Kim, I.G., Lee, J.D.: Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2semiconductors (M=Mo, W;X=S, Se, Te). Phys. Rev. B. 85(3), (2012). https://doi.org/10.1103/PhysRevB.85.033305

Zhao, N., et al.: Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber. Opt. Express. 22(9), 10906–10913 (2014). https://doi.org/10.1364/OE.22.010906

Bao, Q., Loh, K.P.: Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS NANO. 6, 3677–3694 (2012)

Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

Kelleher, E.J.R., et al.: Nanosecond-pulse fiber lasers mode-locked with nanotubes. Appl. Phys. Lett. 95(11), 111108 (2009). https://doi.org/10.1063/1.3207828

Lagatsky, A.A., et al.: 2 μm solid-state laser mode-locked by single-layer graphene. Appl. Phys. Lett. 102(1), 013113 (2013). https://doi.org/10.1063/1.4773990

Li, J., et al.: Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep. 6, 30361 (2016). https://doi.org/10.1038/srep30361

Li, P., Zhang, G., Zhang, H., Zhao, C., Chi, J., Zhao, Z., Yang, C., Hu, H., Yao, Y.: Q -switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber. IEEE Photon. Technol. Lett. 26(19), 1912–1915 (2014). https://doi.org/10.1109/lpt.2014.2341832

Li, X.H., Wang, Y.S., Zhao, W., Zhang, W., Yang, Z., Hu, X.H., Wang, H.S., Wang, X.L., Zhang, Y.N., Gong, Y.K., Li, C., Shen, D.Y.: All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter. Laser Phys. 21(5), 940–944 (2011). https://doi.org/10.1134/s1054660x11090143

Peng, J., Zhan, L., Luo, S., Shen, Q.S.: Generation of Soliton molecules in a Normal-dispersion Fiber laser. IEEE Photon. Technol. Lett. 25(10), 948–951 (2013). https://doi.org/10.1109/lpt.2013.2257720

Runge, A.F.J., Aguergaray, C., Provo, R., Erkintalo, M., Broderick, N.G.R.: All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror. Opt. Fiber Technol. 20(6), 657–665 (2014). https://doi.org/10.1016/j.yofte.2014.07.010

Scardaci, V., Sun, Z., Wang, F., Rozhin, A.G., Hasan, T., Hennrich, F., White, I.H., Milne, W.I., Ferrari, A.C.: Carbon nanotube polycarbonate composites for ultrafast lasers. Adv. Mater. 20(21), 4040–4043 (2008). https://doi.org/10.1002/adma.200800935

Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (Jul 2010). https://doi.org/10.1038/nnano.2010.89

Sotor, J., et al.: Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber. Opt. Express. 22(5), 5536–5543 (2014). https://doi.org/10.1364/OE.22.005536

Sun, Z., Hasan, T., Ferrari, A.C.: Ultrafast lasers mode-locked by nanotubes and graphene. Phys. E: Low-dimensional Syst. Nanostructures. 44(6), 1082–1091 (2012). https://doi.org/10.1016/j.physe.2012.01.012

Wang, Y., Zhang, B., Yang, H., Hou, J., Su, X., Sun, Z., He, J.: Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror. J. Lightwave Technol. 37(13), 2927–2931 (2019). https://doi.org/10.1109/jlt.2019.2907654

Wise, F.W., Chong, A., Renninger, W.H.: High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photon. Rev. 2(1–2), 58–73 (2008). https://doi.org/10.1002/lpor.200710041

Woodward, R., Kelleher, E.: 2D saturable absorbers for fibre lasers. Appl. Sci. 5(4), 1440–1456 (2015). https://doi.org/10.3390/app5041440

Wu, H.-Q., Linghu, C.-Y., Lu, H.-M., Qian, H.: Graphene applications in electronic and optoelectronic devices and circuits. Chin. Phys. B. 22(9), 098106 (2013). https://doi.org/10.1088/1674-1056/22/9/098106

Xia, H., et al.: Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber. Opt. Express. 22(14), 17341–17348 (2014). https://doi.org/10.1364/OE.22.017341

Zhang, G., Wang, Y., Chen, Z., Jiao, Z.: Graphene oxide based reflective saturable absorber for Q-switched and mode-locked YVO4/Nd:YVO4/YVO4laser. J. Opt. 20(5), 055505 (2018). https://doi.org/10.1088/2040-8986/aab7a6

Zhang, H., Tang, D.Y., Zhao, L.M., Bao, Q.L., Loh, K.P.: Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express. 17(19), 17630–17635 (2009). https://doi.org/10.1002/adfm.200901007

Zhang, X., et al.: Saturable absorption in graphene at 800-nm band. Optoelectronic Devices And Integration Iv. 8555, 855512 (2012). https://doi.org/10.1117/12.999624

Zhao, L., Li, D., Li, L., Wang, X., Geng, Y., Shen, D., Su, L.: Route to larger pulse energy in ultrafast fiber lasers. IEEE J. Selected Top. Quantum Electron. 24(3), 1–9 (2018). https://doi.org/10.1109/jstqe.2017.2771739

Zhong, Y., Cai, Z., Wu, D., Cheng, Y., Peng, J., Weng, J., Luo, Z., Xu, B., Xu, H.: Passively Q-switched red Pr3+−doped fiber laser with graphene-oxide saturable absorber. IEEE Photon. Technol. Lett. 28(16), 1755–1758 (2016). https://doi.org/10.1109/lpt.2016.2550859

Dzhibladze, M.I., Esiashvili, Z.G., TeplitskiT, E.S., Isaev, S.K., Sagaradze, V.R.: Mode locking in a fiber laser. IOP Sci. 13(2), 245–246 (1983)

Martinez, A., Sun, Z.: Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics. 7(11), 842–845 (2013). https://doi.org/10.1038/nphoton.2013.304

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotubeâ “Polymer composites for ultrafast photonics,” Adv. Mater., 21, 38â “39, 3874–3899, 2009, doi: https://doi.org/10.1002/adma.200901122,

Gerosa, R.M., Suarez, F.G., Vianna, P.G., Domingues, S.H., de Matos, C.J.S.: One-step deposition and in-situ reduction of graphene oxide in photonic crystal fiber for all-fiber laser mode locking. Opt. Laser Technol. 121, 105838 (2020). https://doi.org/10.1016/j.optlastec.2019.105838

Martinez, A., Fuse, K., Xu, B., Yamashita, S.: Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive modelocked lasing. Opt. Express. 18(22), 23054–23061 (2010). https://doi.org/10.1364/OE.18.023054

Yanagida, T., Watanabe, K., Okada, G., Kawaguchi, N.: Optical, scintillation and radiation tolerance properties of Pr-doped pyrosilicate crystals. Jpn J. Appl. Phys. 57(10), 106401 (2018). https://doi.org/10.7567/jjap.57.106401

Zhang, M., Kelleher, E.J.R., Pozharov, A.S., Obraztsova, E.D., Popov, S.V., Taylor, J.R.: Passive synchronization of all-fiber lasers through a common saturable absorber. Opt. Lett. 36(20), 3984–3986 (2011). https://doi.org/10.1364/OL.36.003984

Ni, Z.H., Wang, H.M., Kasim, J., Fan, H.M., Yu, T., Wu, Y.H., Feng, Y.P., Shen, Z.X.: Graphene thickness determination using reflection and contrast spectroscopy. Am. Chem. Soc. 7, 2758–2763 (2007)

Bo, F., Yi, H., Xiaosheng, X., Hongwei, Z., Zhipei, S., Changxi, Y.: Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 μm. IEEE J. Selected Top. Quantum Electron. 20(5), 411–415 (2014). https://doi.org/10.1109/jstqe.2014.2302361

Bao, Q., Zhang, H., Wang, Y., Ni, Z., Yan, Y., Shen, Z.X., Loh, K.P., Tang, D.Y.: Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19(19), 3077–3083 (2009). https://doi.org/10.1002/adfm.200901007

Dai, T., Liu, X., Lei, W., Zhang, J.: Passively Q-Switched Nd:YVO4 Laser Based on Silver-Plated Graphene Saturable Absorber. IEEE (2019)

Wang, Y.Y., et al.: Raman Studies of monolayer graphene: the substrate effect. Am. Chem. Soc. 12, 10637–10639 (2008)

Ni, Z.H., Wang, Y.y., Yu, T., Shen, Z.X., Wang, H.m., Wu, Y.H., Chen, W., Shen Wee, A.T.: Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C. 112, 10637–10639 (2008)

Zheng, Z., Zhao, C., Lu, S., Chen, Y., Li, Y., Zhang, H., Wen, S.: Microwave and optical saturable absorption in graphene. Opt. Express. 20(21), 23201–23214 (2012). https://doi.org/10.1364/OE.20.023201

Zhu, Y., et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068

Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (Apr 2009). https://doi.org/10.1038/nnano.2009.58

Ghanbari, H., Shafikhani, M.A., Daryalaal, M.: Graphene nanosheets production using liquid-phase exfoliation of pre-milled graphite in dimethylformamide and structural defects evaluation. Ceram. Int. 45(16), 20051–20057 (2019). https://doi.org/10.1016/j.ceramint.2019.06.267

Chakrabarti, M.H., Manan, N.S.A., Brandon, N.P., Maher, R.C., Mjalli, F.S., AlNashef, I.M., Hajimolana, S.A., Hashim, M.A., Hussain, M.A., Nir, D.: One-pot electrochemical gram-scale synthesis of graphene using deep eutectic solvents and acetonitrile. Chem. Eng. J. 274, 213–223 (2015). https://doi.org/10.1016/j.cej.2015.03.083

Hossain, S.T., Wang, R.: Electrochemical exfoliation of graphite: effect of temperature and hydrogen peroxide addition. Electrochim. Acta. 216, 253–260 (2016). https://doi.org/10.1016/j.electacta.2016.09.022

Yu, P., Lowe, S.E., Simon, G.P., Zhong, Y.L.: Electrochemical exfoliation of graphite and production of functional graphene. Curr. Opin. Colloid Interface Sci. 20(5–6), 329–338 (2015). https://doi.org/10.1016/j.cocis.2015.10.007

Murdock, A.T., van Engers, C.D., Britton, J., Babenko, V., Meysami, S.S., Bishop, H., Crossley, A., Koos, A.A., Grobert, N.: Targeted removal of copper foil surface impurities for improved synthesis of CVD graphene. Carbon. 122, 207–216 (2017). https://doi.org/10.1016/j.carbon.2017.06.075

Rodriguez, C.L.C., Kessler, F., Dubey, N., Rosa, V., Fechine, G.J.M.: CVD graphene transfer procedure to the surface of stainless steel for stem cell proliferation. Surf. Coat. Technol. 311, 10–18 (2017). https://doi.org/10.1016/j.surfcoat.2016.12.111

Gao, H., Xue, C., Hu, G., Zhu, K.: Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium. Ultrason. Sonochem. 37, 120–127 (Jul 2017). https://doi.org/10.1016/j.ultsonch.2017.01.001

Gao, H., Zhu, K., Hu, G., Xue, C.: Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO 2 /H 2 O medium. Chem. Eng. J. 308, 872–879 (2017). https://doi.org/10.1016/j.cej.2016.09.132

Hadi, A., Karimi-Sabet, J., Moosavian, S.M.A., Ghorbanian, S.: Optimization of graphene production by exfoliation of graphite in supercritical ethanol: a response surface methodology approach. J. Supercrit. Fluids. 107, 92–105 (2016). https://doi.org/10.1016/j.supflu.2015.08.022

Song, N., Jia, J., Wang, W., Gao, Y., Zhao, Y., Chen, Y.: Green production of pristine graphene using fluid dynamic force in supercritical CO2. Chem. Eng. J. 298, 198–205 (2016). https://doi.org/10.1016/j.cej.2016.04.022

Chia, J.S.Y., Tan, M.T.T., SimKhiew, P., Chin, J.K., Lee, H., Bien, D.C.S., Teh, A.S., Siong, C.W.: Facile synthesis of few-layer graphene by mild solvent thermal exfoliation of highly oriented pyrolytic graphite. Chem. Eng. J. 231, 1–11 (2013). https://doi.org/10.1016/j.cej.2013.06.106

Keller, U.: Recent developments in compact ultrafast lasers. Nature. 424, 831–838 (2003)

Keller, U.: Semiconductor Saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Selected Top. Quantum Electron. 2(3), 435–453 (1996). https://doi.org/10.1109/2944.571743

Keller, U., Miller, D.A.B., Boyd, G.D., Chiu, T.H., Ferguson, J.F., Asom, M.T.: Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. Opt. Lett. 17(7), 505–507 (1992). https://doi.org/10.1364/OL.17.000505

Zhu, X., Chen, S.: Study of a graphene saturable absorber film fabricated by the optical deposition method. IEEE Photon. J. 11(6), 1–9 (2019). https://doi.org/10.1109/jphot.2019.2948940

Yan, Z., Li, T., Zhao, J., Zhao, S., Yang, K., Li, G., Li, D., Zhang, S., Li, J.: Tungsten ditelluride for a nanosecond Ho,Pr:LiLuF4 laser at 2.95 μm. Laser Phys. Lett. 15(4), 045801 (2018). https://doi.org/10.1088/1612-202X/aaa94b

Set, S.Y., Yaguchi, H., Tanaka, Y., Jablonski, M.: Ultrafast Fiber pulsed lasers incorporating carbon nanotubes. IEEE J. Selected Top. Quantum Electron. 10(1), 137–146 (2004). https://doi.org/10.1109/jstqe.2003.822912

Kajikawa, S., Yoshida, M., Ishii, O., Yamazaki, M., Fujimoto, Y.: Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene. Opt. Commun. 424, 13–16 (2018). https://doi.org/10.1016/j.optcom.2018.04.024

Sotor, J., Sobon, G., Abramski, K.M.: Er-doped fibre laser mode-locked by mechanically exfoliated graphene saturable absorber. Opto−Electron. 20(4), 362–366 (2012). https://doi.org/10.2478/s11772−012−0043−9

Ahmad, H., Soltani, S., Thambiratnam, K.: Q-switched erbium-doped fiber laser with molybdenum disulfide (MoS2) nanoparticles on D-shaped fiber as saturable absorber. J. Nonlin. Opt. Phys. Mater. 28(03), 1950026 (2019). https://doi.org/10.1142/s0218863519500267

Chen, T., Liao, C., Wang, D.N., Wang, Y.: Passively mode-locked fiber laser by using monolayer chemical vapor deposition of graphene on D-shaped fiber. Appl. Opt. 53(13), 2828–2832 (2014). https://doi.org/10.1364/AO.53.002828

Zapata, J.D., Steinberg, D., Saito, L.A., de Oliveira, R.E., Cardenas, A.M., de Souza, E.A.: Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation. Sci. Rep. 6, 20644 (2016). https://doi.org/10.1038/srep20644

Zapata, J.D., Steinberg, D., Saito, L.A.M., de Oliveira, R.E.P., Cárdenas, A.M., de Souza, E.A.T.: Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation. Sci. Rep. 6(1), (2016). https://doi.org/10.1038/srep20644

Aiub, E.J., Steinberg, D., Thoroh de Souza, E.A., Saito, L.A.M.: 200-fs mode-locked Erbium-doped fiber laser by using mechanically exfoliated MoS<sub>2</sub> saturable absorber onto D-shaped optical fiber. Opt. Express. 25(9), 10546–10552 (2017). https://doi.org/10.1364/OE.25.010546

Gerosa, R.M., Steinberg, D., Pellicer, F.N., Domingues, S.H., Souza, E.A.T.d., Saito, L.A.M.: 300-fs mode-locked Erbium doped fiber laser using evanescent field interaction through graphene oxide saturable absorber in D-shaped fibers. In: Latin America Optics and Photonics Conference (2016)

Steinberg, D., et al.: Graphene oxide and reduced graphene oxide as saturable absorbers onto D-shaped fibers for sub 200-fs EDFL mode-locking. Opt. Mater. Express. 8(1), 144 (2017). https://doi.org/10.1364/ome.8.000144

Yang, H.R.: Switchable dual-wavelength fiber laser mode-locked by monolayer graphene on D-shaped fiber. J. Mod. Opt. 62(17), 1363–1367 (2015). https://doi.org/10.1080/09500340.2015.1039616

Huang, Q., Zou, C., Wang, T., Al Araimi, M., Rozhin, A., Mou, C.: Influence of average cavity dispersion and spectral bandwidth on passively harmonic mode locked L-band Er-doped Fiber laser. IEEE J. Selected Top. Quantum Electron. 25(4), 1–8 (2019). https://doi.org/10.1109/jstqe.2019.2924869

Ahmad, H., Reduan, S.A., Yusoff, N., Ismail, M.F., Aidit, S.N.: Mode-locked pulse generation in erbium-doped fiber laser by evanescent field interaction with reduced graphene oxide-titanium dioxide nanohybrid. Opt. Laser Technol. 118, 93–101 (2019). https://doi.org/10.1016/j.optlastec.2019.05.015

Ahmad, H., Soltani, S., Thambiratnam, K., Yasin, M., Tiu, Z.C.: Mode-locking in Er-doped fiber laser with reduced graphene oxide on a side-polished fiber as saturable absorber. Opt. Fiber Technol. 50, 177–182 (2019). https://doi.org/10.1016/j.yofte.2019.03.023

Salim, M.A.M., Ismail, M.A., Razak, M.Z.A., Azzuhri, S.R.: Generation of Ultrafast Erbium-Doped Fiber Laser (EDFL) utilizing Graphene Thin Film. J. Phys.: Conf. Ser. 1484, 012026 (2020). https://doi.org/10.1088/1742-6596/1484/1/012026

Chen, Z.-D., et al.: Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser. Chin. Phys. B. 27(8), 084206 (2018). https://doi.org/10.1088/1674-1056/27/8/084206

Wang, P., Xu, X., Guo, Z., Jin, X., Shi, G.: 926 nm Yb-doped fiber femtosecond laser system for two-photon microscopy. Appl. Phys. Express. 12(3), 032008 (2019). https://doi.org/10.7567/1882-0786/aafe8a

Haris, H., Harun, S.W., Jusoh, Z.: Generation of bound state of solitons pulses with graphene in erbium-doped fiber laser cavity. J. Phys. Conf. Ser. 1151, 012017 (2019). https://doi.org/10.1088/1742-6596/1151/1/012017

Pawliszewska, M., Martynkien, T., Przewloka, A., Sotor, J.: Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber. Opt. Lett. 43(1), 38–41 (2018). https://doi.org/10.1364/OL.43.000038

Wang, C., et al.: Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser. Nanotechnology. 30(2), 025204 (2019). https://doi.org/10.1088/1361-6528/aae8c1

Steinberg, D., Zapata, J.D., Thoroh de Souza, E.A., Saito, L.A.M.: Mechanically exfoliated graphite onto D-shaped optical Fiber for femtosecond mode-locked erbium-doped fiber laser. J. Lightwave Technol. 36(10), 1868–1874 (2018). https://doi.org/10.1109/jlt.2018.2793764

Uehara, H., Tokita, S., Kawanaka, J., Konishi, D., Murakami, M., Yasuhara, R.: A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber. Appl. Phys. Express. 12(2), 022002 (2019). https://doi.org/10.7567/1882-0786/aaf994

Ahmad, H., Albaqawi, H.S., Yusoff, N., Reduan, S.A., Yi, C.W.: Reduced Graphene Oxide-Silver Nanoparticles for Optical Pulse Generation in Ytterbium- and Erbium-Doped Fiber Lasers. Sci. Rep. 10(1), 9408 (2020). https://doi.org/10.1038/s41598-020-66253-w

Kim, H., Cho, J., Jang, S.-Y., Song, Y.-W.: Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers. Appl. Phys. Lett. 98(2), 021104 (2011). https://doi.org/10.1063/1.3536502

Li, T.-C., Han, C.-F., Hsieh, K.-C., Lin, J.-F.: Effects of thin titanium and graphene depositions and annealing temperature on electrical, optical, and mechanical properties of IGZO/Ti/graphene/PI specimen. Ceram. Int. 44(6), 6573–6583 (2018). https://doi.org/10.1016/j.ceramint.2018.01.060

Saeed, M., Alshammari, Y., Majeed, S.A., Al-Nasrallah, E.: Chemical vapour deposition of graphene-synthesis, characterisation, and applications: a review. Molecules. 25(17), (2020). https://doi.org/10.3390/molecules25173856

Yu, L., Yin, Y., Shi, Y., Dai, D., He, S.: Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica. 3(2), (2016). https://doi.org/10.1364/optica.3.000159

Kawase, H., Uehara, H., Chen, H., Yasuhara, R.: Passively Q-switched 2.9 μm Er:YAP single crystal laser using graphene saturable absorber. Appl. Phys. Express. 12(10), 102006 (2019). https://doi.org/10.7567/1882-0786/ab3e61

Zhang, R., Wang, J., Liao, M., Li, X., Kuan, P.W., Liu, Y., Zhou, Y., Gao, W.: Tunable Q-switched fiber laser based on a graphene saturable absorber without additional tuning element. IEEE Photon. J. 11(1), 1–10 (2019). https://doi.org/10.1109/jphot.2019.2892646

Sobon, G., Sotor, J., Pasternak, I., Grodecki, K., Paletko, P., Strupinski, W., Jankiewicz, Z., Abramski, K.M.: Er-doped fiber laser mode-locked by CVD-graphene saturable absorber. J. Lightwave Technol. 30(17), 2770–2775 (2012). https://doi.org/10.1109/jlt.2012.2207092

Sotor, J., Sobon, G., Krzempek, K., Abramski, K.M.: Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber. Opt. Commun. 285(13–14), 3174–3178 (2012). https://doi.org/10.1016/j.optcom.2012.03.002

Zhu, G., Zhu, X., Wang, F., Xu, S., Li, Y., Guo, X., Balakrishnan, K., Norwood, R.A., Peyghambarian, N.: Graphene mode-locked Fiber laser at 2.8 μm. IEEE Photon. Technol. Lett. 28(1), 7–10 (2016). https://doi.org/10.1109/lpt.2015.2478836

Cao, W.J., Wang, H.Y., Luo, A.P., Luo, Z.C., Xu, W.C.: Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser. Laser Phys. Lett. 9(1), 54–58 (2012). https://doi.org/10.1002/lapl.201110085

Luo, Z., Zhou, M., Wu, D., Ye, C., Weng, J., Dong, J., Xu, H., Cai, Z., Chen, L.: Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped Fiber lasers. J. Lightwave Technol. 29(18), 2732–2739 (2011). https://doi.org/10.1109/jlt.2011.2164238

Zhang, H., Bao, Q., Tang, D., Zhao, L., Loh, K.: Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett. 95(14), 141103 (2009). https://doi.org/10.1063/1.3244206

Liu, X.M., et al.: Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Sci. Rep. 6, 26024 (2016). https://doi.org/10.1038/srep26024

Lv, R.-d., et al.: Carboxyl graphene oxide solution saturable absorber for femtosecond mode-locked erbium-doped fiber laser. Chin. Phys. B. 27(11), 114214 (2018). https://doi.org/10.1088/1674-1056/27/11/114214

Wang, Z., Zhu, S.E., Chen, Y., Wu, M., Zhao, C., Zhang, H., Janssen, G.C.A.M., Wen, S.: Multilayer graphene for Q-switched mode-locking operation in an erbium-doped fiber laser. Opt. Commun. 300, 17–21 (2013). https://doi.org/10.1016/j.optcom.2013.03.010

Xu, J., Wu, S., Liu, J., Wang, Q., Yang, Q.-H., Wang, P.: Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber. Opt. Commun. 285(21–22), 4466–4469 (2012). https://doi.org/10.1016/j.optcom.2012.07.012

Fu, B., Gui, L., Zhang, W., Xiao, X., Zhu, H., Yang, C.: Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber. Opt. Commun. 286, 304–308 (2013). https://doi.org/10.1016/j.optcom.2012.09.026

Sobon, G., Sotor, J., Abramski, K.M.: Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz. Appl. Phys. Lett. 100(16), 161109 (2012). https://doi.org/10.1063/1.4704913

Peng, J., Zhan, L., Luo, S., Shen, Q.: Passive harmonic mode-locking of dissipative solitons in a normal-dispersion Er-doped fiber laser. J. Lightwave Technol. 31(16), 2709–2714 (2013). https://doi.org/10.1109/jlt.2013.2271773

Sobon, G., Sotor, J., Pasternak, I., Krajewska, A., Strupinski, W., Abramski, K.M.: Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers. Opt. Mater. Express. 5(12), 2884 (2015). https://doi.org/10.1364/ome.5.002884

Boguslawski, J., et al.: Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers. Photon. Res. 3(4), 119 (2015). https://doi.org/10.1364/prj.3.000119

Chen, H.R., Tsai, C.Y., Cheng, H.M., Lin, K.H., Hsieh, W.F.: Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers. Opt. Express. 22(11), 12880–12889 (2014). https://doi.org/10.1364/OE.22.012880

Chen, H.-R., Tsai, C.-Y., Chang, C.-Y., Lin, K.-H., Chang, C.-S., Hsieh, W.-F.: Investigation of Graphene dispersion from Kelly sideband in stable mode-locked erbium-doped Fiber laser by few-layer graphene saturable absorbers. J. Lightwave Technol. 33(21), 4406–4412 (2015). https://doi.org/10.1109/jlt.2015.2471100

Rosa, H.G., Steinberg, D., Zapata, J.D., Saito, L.A.M., Cardenas, A.M., Gomes, J.C.V., Thoroh de Souza, E.A.: Raman mapping characterization of all-Fiber CVD monolayer graphene saturable absorbers for erbium-doped fiber laser mode locking. J. Lightwave Technol. 33(19), 4118–4123 (2015). https://doi.org/10.1109/jlt.2015.2467173

Rosa, H.G., et al.: Controlled stacking of graphene monolayer saturable absorbers for ultrashort pulse generation in erbium-doped fiber lasers. Opt. Mater. Express. 7(7), 2528 (2017). https://doi.org/10.1364/ome.7.002528

Sobon, G., Sotor, J., Jagiello, J., Kozinski, R., Zdrojek, M., Holdynski, M., Paletko, P., Boguslawski, J., Lipinska, L., Abramski, K.M.: Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express. 20(17), 19463–19473 (2012). https://doi.org/10.1364/OE.20.019463

Wang, Z., Mu, H., Yuan, J., Zhao, C., Bao, Q., Zhang, H.: Graphene-Bi2Te3 Heterostructure as broadband Saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped Fiber lasers. IEEE J. Selected Top. Quantum Electron. 23(1), 195–199 (2017). https://doi.org/10.1109/jstqe.2016.2514784

Sobon, G., et al.: Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber. Appl. Phys. Lett. 101(24), 241106 (2012). https://doi.org/10.1063/1.4770373

Rosdin, R.Z.R.R.R.R.Z.R.R., Ahmad, F.A.F., Ali, N.M.A.N.M., Harun, S.W.H.S.W., Arof, H.A.H.: Q-switched Er-doped fiber laser with low pumping threshold using graphene saturable absorber. Chin. Opt. Lett. 12(9), 091404–091408 (2014). https://doi.org/10.3788/col201412.091404

Wang, Z.T., Chen, Y., Zhao, C.J., Zhang, H., Wen, S.C.: Switchable dual-wavelength synchronously Q-switched erbium-doped Fiber laser based on graphene saturable absorber. IEEE Photon. J. 4(3), 869–876 (2012). https://doi.org/10.1109/jphot.2012.2199102

Zhao, J.-Q., et al.: Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation. Chin. Phys. Lett. 29(11), 114206 (2012). https://doi.org/10.1088/0256-307x/29/11/114206

Z. Cheng, S. Wu, H. Shi, J. Xu, Q.-H. Yang, and P. Wang, “Dissipative soliton resonance in an all-normal-dispersion graphene oxide mode-locked Yb-doped fiber laser” Tech. Dig., 2013

Huang, S., Wang, Y., Peiguang, Y., Zhang, G., Zhao, J., Li, H., Lin, R., Cao, G., Duan, J.’.: Observation of multipulse bunches in a graphene oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion. Appl. Phys. B. 116(4), 939–946 (2014). https://doi.org/10.1007/s00340-014-5780-7

Luo, Z., Huang, Y., Wang, J., Cheng, H., Cai, Z., Ye, C.: Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited Fiber-taper. IEEE Photon. Technol. Lett. 24(17), 1539–1542 (2012). https://doi.org/10.1109/lpt.2012.2208100

Li, H., Wang, Y., Yan, P., Cao, G., Zhao, J., Zhang, G., Huang, S., Lin, R.: Passively harmonic mode locking in ytterbium-doped fiber laser with graphene oxide saturable absorber. Opt. Eng. 52, 126102 (2013). https://doi.org/10.1117/1.OE.52.12.126102

Huang, S.S., et al.: Soliton rains in a graphene-oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion. Laser Phys. Lett. 11(2), 025102 (2014). https://doi.org/10.1088/1612-2011/11/2/025102

Huaiqin, L., et al.: Tunable and switchable dual-wavelength dissipative soliton operation of a weak-birefringence all-Normal-dispersion Yb-doped Fiber laser. IEEE Photon. J. 5(5), 1501807–1501807 (2013). https://doi.org/10.1109/jphot.2013.2281977

Cheng, Z., Li, H., Shi, H., Ren, J., Yang, Q.H., Wang, P.: Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser. Opt. Express. 23(6), 7000–7006 (2015). https://doi.org/10.1364/OE.23.007000

Hou, L., et al.: Femtosecond ytterbium-doped fiber laser mode-locked by carboxyl-functionalized graphene oxide saturable absorber. Appl. Phys. Express. 11(1), 012702 (2018). https://doi.org/10.7567/apex.11.012702

Huang, S., Wang, Y., Yan, P., Zhao, J., Li, H., Lin, R.: Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser. Opt. Express. 22(10), 11417–11426 (2014). https://doi.org/10.1364/OE.22.011417

Huang, S.S., et al.: High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber. Laser Phys. 24(1), 015001 (2014). https://doi.org/10.1088/1054-660x/24/1/015001

Loiko, P.A., et al.: Passive Q-switching of Yb bulk lasers by a graphene saturable absorber. Appl. Phys. B. 122(4), (2016). https://doi.org/10.1007/s00340-016-6384-1

Liu, J., Wu, S., Yang, Q.-h., Wang, P.: Mode-locked and Q-switched Yb-doped fiber lasers with graphene saturable absorber. Optoelectronic Devices And Integration Iv. 8192, 819244 (2011). https://doi.org/10.1117/12.901098

Fan, L., Dong, Z., Guoyu, H., Guo, J., Xu, C., Li, K., Tian, J., Song, Y.: Influence of few-layer WS2 and mono-layer WS2 on passively Q-switched ytterbium-doped fibre lasers. Laser Phys. 29(7), 075104 (2019). https://doi.org/10.1088/1555-6611/ab20c2

Yusoff, R.A.M., Jafry, A.A.A., Kasim, N., Munajat, Y., Harun, S.W., Halim, N.A.H.: Q-switched ytterbium-doped fiber laser using graphene oxide as passive saturable absorber. J. Phys. Conf. Ser. 1371, 012004 (2019). https://doi.org/10.1088/1742-6596/1371/1/012004

Zhao, F., Wang, H., Zhang, T., Wang, Y., Hu, X., Sun, C., Zhang, W.: Passively Q-switched all-fiber Yb-doped lasers based on nonlinear multimode interference†. J. Russ. Laser Res. 40(1), 87–93 (2019). https://doi.org/10.1007/s10946-019-09774-8

Ren, Y., Feng, M., Ren, A., Zhang, K., Yang, J., Sun, G., Wang, T., Li, Z., Li, Y., Liu, Z., Song, F.: Dynamics of the passive synchronisation of erbium- and ytterbium-doped fibre Q-switched lasers with a common graphene saturable absorber. Laser Phys. 29(8), 085101 (2019). https://doi.org/10.1088/1555-6611/ab23ec

Liu, J., Wang, Y.G., Qu, Z.S., Zheng, L.H., Su, L.B., Xu, J.: Graphene oxide absorber for 2 μm passive mode-locking tm:YAlO3 laser. Laser Phys. Lett. 9(1), 15–19 (2012). https://doi.org/10.1002/lapl.201110087

Zhang, E.J.R.K.M., Torrisi, F., Sun, Z., Hasan, T., Popa, D., Wang, F., Ferrari, A.C., Popov, S.V., Taylor, J.R.: Tm-doped fiber laser mode-locked by graphene-polymer composite. Opt. Soc. Am. 20, 25077–25084 (2012)

Sobon, G., Sotor, J., Pasternak, I., Krajewska, A., Strupinski, W., Abramski, K.M.: All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser. Opt. Express. 23(7), 9339–9346 (2015). https://doi.org/10.1364/OE.23.009339

Zhang, M., Kelleher, E.J.R., Torrisi, F., Sun, Z., Hasan, T., Popa, D., Wang, F., Ferrari, A.C., Popov, S.V., Taylor, J.R.: Tm-doped fiber laser mode-locked by graphene-polymer composite. Opt. Express. 20(22), 25077–25084 (2012). https://doi.org/10.1364/OE.20.025077

Yan, Z., et al.: Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution. Opt. Express. 23(4), 4369–4376 (2015). https://doi.org/10.1364/OE.23.004369

Wang, J., et al.: 152 fs nanotube-mode-locked thulium-doped all-fiber laser. Sci Rep. 6, 28885 (2016). https://doi.org/10.1038/srep28885

Liu, J., Xia, K., Zhang, W., Zhu, J., Yan, B., Yang, P., Dai, S., Nie, Q.: Tm-doped all-fiber structured femtosecond laser mode-locked by a novel Chem-Te saturable absorber. Infrared Phys. Technol. 108, 103343 (2020). https://doi.org/10.1016/j.infrared.2020.103343

Ahmad, H., Reduan, S.A., Ooi, S.I., Ismail, M.A.: Mechanically exfoliated In2Se3 as a saturable absorber for mode-locking a thulium-doped fluoride fiber laser operating in S-band. Appl Opt. 57(24), 6937–6942 (2018). https://doi.org/10.1364/AO.57.006937

Dou, Z., Zhang, B., He, X., Xu, Z., Hou, J.: High-power and large-energy dissipative soliton resonance in a compact tm-doped all-fiber laser. IEEE Photon. Technol. Lett. 31(5), 381–384 (2019). https://doi.org/10.1109/lpt.2019.2895906

Sotor, J., et al.: All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber. Opt. Lett. 42(8), 1592–1595 (2017). https://doi.org/10.1364/OL.42.001592

Zhang, Q., Jiang, X., Zhang, M., Jin, X., Zhang, H., Zheng, Z.: Wideband saturable absorption in metal-organic frameworks (MOFs) for mode-locking Er- and Tm-doped fiber lasers. Nanoscale. 12(7), 4586–4590 (2020). https://doi.org/10.1039/c9nr09330c

Xie, G.Q., et al.: Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength. Opt. Mater. Express. 2, 879–883 (2012)

Ahmad, H., Samion, M.Z., Sharbirin, A.S., Ismail, M.F.: Dual-wavelength, passively Q-switched thulium-doped fiber laser with N-doped graphene saturable absorber. Optik. 149, 391–397 (2017). https://doi.org/10.1016/j.ijleo.2017.09.054

Luo, Z., Li, Y., Huang, Y., Zhong, M., Wan, X.: Graphene mode-locked and Qswitched 2-μm Tm/Ho codoped fiber lasers using 1212-nm high-efficient pumping. Opt. Eng. 55(8), 081310(1–6) (2016). https://doi.org/10.1117/1.OE.55.8.081310

Ahmad, H., Reduan, S.A., Aidit, S.N., Yusoff, N., Maah, M.J., Ismail, M.F., Tiu, Z.C.: Ternary MoWSe2 alloy saturable absorber for passively Q-switched Yb-, Er- and Tm-doped fiber laser. Opt. Commun. 437, 355–362 (2019). https://doi.org/10.1016/j.optcom.2019.01.009

Ahmad, H., Samion, M.Z., Sharbirin, A.S., Norizan, S.F., Aidit, S.N., Ismail, M.F.: Graphene-PVA saturable absorber for generation of a wavelength-tunable passively Q-switched thulium-doped fiber laser in 2.0μm. Laser Phys. 28(5), 055105 (2018). https://doi.org/10.1088/1555-6611/aab2cc

Wang, Q., Chen, T., Zhang, B., Li, M., Lu, Y., Chen, K.P.: All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers. Appl. Phys. Lett. 102(13), 131117 (2013). https://doi.org/10.1063/1.4800036

Sotor, J., et al.: All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber. Opt. Lett. 41(11), 2592–2595 (2016). https://doi.org/10.1364/OL.41.002592

Liu, S., et al.: Graphene Q-switched Ho (3+)-doped ZBLAN fiber laser at 1190 nm. Opt. Lett. 40(2), 147–150 (2015). https://doi.org/10.1364/OL.40.000147

Tengfei Dai, X.L., Lei, W., Chang, J.: Passively Q-Switched Nd:YVO 4 Laser Based on Silver-Plated Graphene Saturable Absorber. IEEE (2019)

Zhao, X., et al.: Picometer-Resolution, Dual-Comb Spectroscopy Based on a Dual-Wavelength Mode-Locked Fiber Laser. CLEO (2016)

Hu, G., Li, T., Pan, Y., Zhao, X., Zhang, M., Zheng, Z.: Asynchronous and Synchronous Dual-Wavelength Pulse Generation in a Non-zero-Dispersion Fiber Laser. CLEO (2017)

Chen, J., et al.: Self-Starting, Turn-Key Dual-Comb Mode-Locked Fiber Laser with a Few-Mode Fiber Filter. CLEO (2017)

Hu, G., et al.: Real-Time Absolute Frequency Measurement of Continuous-Wave Terahertz Radiation Using a Free-Running, Dual-Wavelength, Dual-Comb Mode-Locked Fiber Laser. CLEO (2016)

Zhao, X., Zheng, Z., Liu, Y., Hu, G., Liu, J.: “Dual-wavelength, bidirectional single-wall carbon nanotube mode-locked fiber laser,” (in English). IEEE Photon. Technol. Lett. 26(17), 1722–1725 (Sep 2014). https://doi.org/10.1109/lpt.2014.2332000

Liu, L., Zheng, Z., Zhao, X., Sun, S., Zhu, J.: Dual-wavelength passively q-switched erbium fiber laser based on a swnt absorber. FiO/LS Tech. Dig. (2012). https://doi.org/10.1364/FIO.2012.FM3G.6

Hu, G., Zhang, M.: Dual-Wavelength Passively Q-Switched Yb-Doped Fiber Laser Based on WS 2 Saturable Absorber and Intracavity Polarization. CLEO (2016)

Liu, L., et al.: “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” (in English). Opt. Commun. 294, 267–270 (2013). https://doi.org/10.1016/j.optcom.2012.11.094

Hu, G., et al.: Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser. Sci. Rep. 7, 42082 (2017). https://doi.org/10.1038/srep42082

Liu, L., Zhao, X., Zheng, Z., Wang, Q.: Fast, long-scan-range pump-probe measurement using a dual-wavelength mode-locked fiber laser. FiO/LS Tech. Dig. (2012). https://doi.org/10.1364/FIO.2012.FW2A.1

Zhao, X., Gong, Z., Liu, Y., Yang, Y., Hu, G., Zheng, Z.: Coherent dual-comb mode-locked fiber laser based on a birefringent ring cavity. Front. Optics/Laser Sci. (2015). https://doi.org/10.1364/FIO.2015.FW3C.3

Chen, J., et al.: Low-power consumption dual-comb spectroscopy based on a battery-powered, free-running dual-comb laser system. Front. Opt. (2017). https://doi.org/10.1364/FIO.2017.JTu3A.17

Zhao, X., Zheng, Z., Liu, Y., Guan, J., Liu, L., Sun, Y.: High-resolution absolute distance measurement using a dual-wavelength, dual-comb, femtosecond fiber laser. CLEO Tech. Dig. (2012). https://doi.org/10.1364/CLEO_SI.2012.CM2J.4

Zheng, Z., Zhao, X.: High-Resolution, Dual-Comb Asynchronous Sampling Enabled by Dual-Wavelength Ultrafast Fiber Lasers and its Applications. In: Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (2013)

Chen, J., et al.: Dual-wavelength, dual-comb fiber laser based on a nearly-adiabatic fiber-taper filter. Opt. Soc. Am. (2016). https://doi.org/10.1364/FIO.2016.JTh2A.112

Hu, G.: Multiwavelength, subpicosecond pulse generation from a SWNT-SA mode-locked ring birefringent fiber laser. Nonlin. Opt. Fibers. (2015)

Liu, Y., et al.: Multi-wavelength dissipative soliton, single-wall carbon nanotube mode-locked fiber laser. FIO/ LS Tech. Dig. (2011)

Zhao, X., et al.: Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning. Opt. Soc. Am. 19, 1168–1173 (2011)

Hu, G., Pan, Y., Wang, R., Zhao, X., Zhang, M., Zheng, Z.: Synchronous dual-wavelength pulse generation in an er-doped fiber laser with near-zero dispersion. Front. Optics/Laser Sci. (2016). https://doi.org/10.1364/FIO.2016.JW4A.31

Hu, G., et al.: Terahertz Dual-Comb Spectroscopy with a Free-Running, Dual-Wavelength-Comb Fiber Laser. CLEO (2017)

Zhao, X.: Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning. Opt. Soc. Am. (2011). https://doi.org/10.1364/OE.19.001168

Zhao, X., Zheng, Z., Liu, L., Wang, Q., Chen, H., Liu, J.: Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser. Opt. Soc. Am. (2012). https://doi.org/10.1364/OE.20.025584